Development and validation of a deep neural network–based model to predict acute kidney injury following intravenous administration of iodinated contrast media in hospitalized patients with chronic kidney disease: a multicohort analysis

医学 肾功能 逻辑回归 肾脏疾病 置信区间 接收机工作特性 急性肾损伤 内科学 肌酐 曲线下面积
作者
Ping Yan,Shao-Bin Duan,Xiaoqin Luo,Ning-Ya Zhang,Ying-Hao Deng
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:38 (2): 352-361 被引量:4
标识
DOI:10.1093/ndt/gfac049
摘要

Stratification of chronic kidney disease (CKD) patients [estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2] at risk for post-contrast acute kidney injury (PC-AKI) following intravenous administration of iodinated contrast media (ICM) is important for clinical decision-making and clinical trial enrollment.The derivation and internal validation cohorts originated from the Second Xiangya Hospital. The external validation cohort was generated from the Xiangya Hospital and the openly accessible database Medical Information Mart for Intensive CareIV. PC-AKI was defined based on the serum creatinine criteria of the Kidney Disease: Improving Global Outcomes (KDIGO). Six feature selection methods were used to identify the most influential predictors from 79 candidate variables. Deep neural networks (DNNs) were used to establish the model and compared with logistic regression analyses. Model discrimination was evaluated by area under the receiver operating characteristic curve (AUC). Low-risk and high-risk cutoff points were set to stratify patients.Among 4218 encounters studied, PC-AKI occurred in 10.3, 10.4 and 11.4% of encounters in the derivation, internal and external validation cohorts, respectively. The 14 variables-based DNN model had significantly better performance than the logistic regression model with AUC being 0.939 (95% confidence interval: 0.916-0.958) and 0.940 (95% confidence interval: 0.909-0.954) in the internal and external validation cohorts, respectively, and showed promising discrimination in subgroup analyses (AUC ≥ 0.800). The observed PC-AKI risks increased significantly from the low- to intermediate- to high-risk group (<1.0 to >50%) and the accuracy of patients not developing PC-AKI was 99% in the low-risk category in both the internal and external validation cohorts.A DNN model using routinely available variables can accurately discriminate the risk of PC-AKI of hospitalized CKD patients following intravenous administration of ICM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tomato应助执着采纳,获得20
1秒前
大方嵩发布了新的文献求助10
1秒前
梓ccc完成签到,获得积分10
1秒前
1秒前
求助发布了新的文献求助10
2秒前
风雨1210发布了新的文献求助10
2秒前
2秒前
3秒前
小梁要加油完成签到,获得积分20
3秒前
Alpha发布了新的文献求助10
4秒前
刘鹏宇发布了新的文献求助10
5秒前
zhangscience完成签到,获得积分10
5秒前
可爱的函函应助若狂采纳,获得10
6秒前
小蘑菇应助阿美采纳,获得30
6秒前
科研通AI2S应助机智小虾米采纳,获得10
7秒前
充电宝应助Xx.采纳,获得10
8秒前
zhangscience发布了新的文献求助10
9秒前
深情安青应助大方嵩采纳,获得10
10秒前
英俊的铭应助大方嵩采纳,获得10
10秒前
李还好完成签到,获得积分10
11秒前
满意的柏柳完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
buno应助88采纳,获得10
14秒前
15秒前
三千世界完成签到,获得积分10
15秒前
15秒前
愉快的访旋完成签到,获得积分10
16秒前
Alpha完成签到,获得积分10
17秒前
大大发布了新的文献求助30
17秒前
翠翠发布了新的文献求助10
18秒前
半山发布了新的文献求助10
19秒前
19秒前
天天快乐应助CO2采纳,获得10
19秒前
隐形曼青应助junzilan采纳,获得10
20秒前
Dksido发布了新的文献求助10
20秒前
21秒前
思源应助卓哥采纳,获得10
21秒前
mysci完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808