Development and validation of a deep neural network–based model to predict acute kidney injury following intravenous administration of iodinated contrast media in hospitalized patients with chronic kidney disease: a multicohort analysis

医学 肾功能 逻辑回归 肾脏疾病 置信区间 接收机工作特性 急性肾损伤 内科学 肌酐 曲线下面积
作者
Ping Yan,Shao-Bin Duan,Xiaoqin Luo,Ning-Ya Zhang,Ying-Hao Deng
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:38 (2): 352-361 被引量:4
标识
DOI:10.1093/ndt/gfac049
摘要

Stratification of chronic kidney disease (CKD) patients [estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2] at risk for post-contrast acute kidney injury (PC-AKI) following intravenous administration of iodinated contrast media (ICM) is important for clinical decision-making and clinical trial enrollment.The derivation and internal validation cohorts originated from the Second Xiangya Hospital. The external validation cohort was generated from the Xiangya Hospital and the openly accessible database Medical Information Mart for Intensive CareIV. PC-AKI was defined based on the serum creatinine criteria of the Kidney Disease: Improving Global Outcomes (KDIGO). Six feature selection methods were used to identify the most influential predictors from 79 candidate variables. Deep neural networks (DNNs) were used to establish the model and compared with logistic regression analyses. Model discrimination was evaluated by area under the receiver operating characteristic curve (AUC). Low-risk and high-risk cutoff points were set to stratify patients.Among 4218 encounters studied, PC-AKI occurred in 10.3, 10.4 and 11.4% of encounters in the derivation, internal and external validation cohorts, respectively. The 14 variables-based DNN model had significantly better performance than the logistic regression model with AUC being 0.939 (95% confidence interval: 0.916-0.958) and 0.940 (95% confidence interval: 0.909-0.954) in the internal and external validation cohorts, respectively, and showed promising discrimination in subgroup analyses (AUC ≥ 0.800). The observed PC-AKI risks increased significantly from the low- to intermediate- to high-risk group (<1.0 to >50%) and the accuracy of patients not developing PC-AKI was 99% in the low-risk category in both the internal and external validation cohorts.A DNN model using routinely available variables can accurately discriminate the risk of PC-AKI of hospitalized CKD patients following intravenous administration of ICM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sh发布了新的文献求助30
刚刚
永政sci发布了新的文献求助10
1秒前
1秒前
HH发布了新的文献求助10
1秒前
zhan发布了新的文献求助10
1秒前
2秒前
Vvvnnnaa1发布了新的文献求助10
3秒前
端庄的皮带完成签到,获得积分10
3秒前
丨小桉柠发布了新的文献求助50
3秒前
Owen应助快醒醒采纳,获得10
4秒前
白河夜船发布了新的文献求助10
5秒前
削皮柚子发布了新的文献求助10
5秒前
bellla发布了新的文献求助10
6秒前
6秒前
hff完成签到 ,获得积分10
6秒前
kkk完成签到 ,获得积分10
7秒前
7秒前
酷波er应助MMM采纳,获得10
8秒前
8秒前
8秒前
10秒前
sunshine完成签到,获得积分10
10秒前
HH完成签到,获得积分10
10秒前
10秒前
生动从菡发布了新的文献求助10
11秒前
11秒前
斯文的依白完成签到,获得积分10
11秒前
touka666发布了新的文献求助20
11秒前
舒克完成签到,获得积分10
12秒前
明杰发布了新的文献求助10
12秒前
小鲤鱼完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
Vvvnnnaa1完成签到,获得积分10
15秒前
努力的学牲完成签到,获得积分20
15秒前
15秒前
16秒前
16秒前
杭谷波完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943184
求助须知:如何正确求助?哪些是违规求助? 4208424
关于积分的说明 13082873
捐赠科研通 3987813
什么是DOI,文献DOI怎么找? 2183287
邀请新用户注册赠送积分活动 1198911
关于科研通互助平台的介绍 1111438