亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of a deep neural network–based model to predict acute kidney injury following intravenous administration of iodinated contrast media in hospitalized patients with chronic kidney disease: a multicohort analysis

医学 肾功能 逻辑回归 肾脏疾病 置信区间 接收机工作特性 急性肾损伤 内科学 肌酐 曲线下面积
作者
Ping Yan,Shao-Bin Duan,Xiaoqin Luo,Ning-Ya Zhang,Ying-Hao Deng
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:38 (2): 352-361 被引量:4
标识
DOI:10.1093/ndt/gfac049
摘要

Stratification of chronic kidney disease (CKD) patients [estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2] at risk for post-contrast acute kidney injury (PC-AKI) following intravenous administration of iodinated contrast media (ICM) is important for clinical decision-making and clinical trial enrollment.The derivation and internal validation cohorts originated from the Second Xiangya Hospital. The external validation cohort was generated from the Xiangya Hospital and the openly accessible database Medical Information Mart for Intensive CareIV. PC-AKI was defined based on the serum creatinine criteria of the Kidney Disease: Improving Global Outcomes (KDIGO). Six feature selection methods were used to identify the most influential predictors from 79 candidate variables. Deep neural networks (DNNs) were used to establish the model and compared with logistic regression analyses. Model discrimination was evaluated by area under the receiver operating characteristic curve (AUC). Low-risk and high-risk cutoff points were set to stratify patients.Among 4218 encounters studied, PC-AKI occurred in 10.3, 10.4 and 11.4% of encounters in the derivation, internal and external validation cohorts, respectively. The 14 variables-based DNN model had significantly better performance than the logistic regression model with AUC being 0.939 (95% confidence interval: 0.916-0.958) and 0.940 (95% confidence interval: 0.909-0.954) in the internal and external validation cohorts, respectively, and showed promising discrimination in subgroup analyses (AUC ≥ 0.800). The observed PC-AKI risks increased significantly from the low- to intermediate- to high-risk group (<1.0 to >50%) and the accuracy of patients not developing PC-AKI was 99% in the low-risk category in both the internal and external validation cohorts.A DNN model using routinely available variables can accurately discriminate the risk of PC-AKI of hospitalized CKD patients following intravenous administration of ICM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
凡凡发布了新的文献求助10
2秒前
脑洞疼应助眼睛大白昼采纳,获得30
5秒前
springovo发布了新的文献求助10
6秒前
dd关注了科研通微信公众号
8秒前
orixero应助林然采纳,获得10
10秒前
14秒前
20秒前
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
搜集达人应助眼睛大白昼采纳,获得10
24秒前
dd发布了新的文献求助30
30秒前
醉熏的皮卡丘完成签到 ,获得积分10
59秒前
如梦如画完成签到,获得积分10
1分钟前
乔治哇完成签到 ,获得积分10
1分钟前
自由的无色完成签到 ,获得积分10
1分钟前
科研通AI2S应助ly采纳,获得10
1分钟前
诸葛小哥哥完成签到 ,获得积分10
1分钟前
1分钟前
SCI完成签到,获得积分10
1分钟前
林然关注了科研通微信公众号
1分钟前
隐形曼青应助springovo采纳,获得10
1分钟前
友好凌波完成签到 ,获得积分10
2分钟前
夜阑卧听完成签到,获得积分10
2分钟前
2分钟前
林然发布了新的文献求助10
2分钟前
AMENG完成签到,获得积分10
2分钟前
2分钟前
springovo发布了新的文献求助10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
蕃茄鱼完成签到 ,获得积分10
2分钟前
英俊的铭应助Daisy采纳,获得10
2分钟前
小王要努力完成签到,获得积分10
2分钟前
zmnzmnzmn应助小王要努力采纳,获得10
2分钟前
2分钟前
2分钟前
玩命的糖豆完成签到 ,获得积分10
2分钟前
朴实的小萱完成签到 ,获得积分10
2分钟前
2分钟前
xiehexin发布了新的文献求助10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775864
求助须知:如何正确求助?哪些是违规求助? 3321496
关于积分的说明 10205838
捐赠科研通 3036564
什么是DOI,文献DOI怎么找? 1666324
邀请新用户注册赠送积分活动 797334
科研通“疑难数据库(出版商)”最低求助积分说明 757797