亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of a deep neural network–based model to predict acute kidney injury following intravenous administration of iodinated contrast media in hospitalized patients with chronic kidney disease: a multicohort analysis

医学 肾功能 逻辑回归 肾脏疾病 置信区间 接收机工作特性 急性肾损伤 内科学 肌酐 曲线下面积
作者
Ping Yan,Shao-Bin Duan,Xiaoqin Luo,Ning-Ya Zhang,Ying-Hao Deng
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:38 (2): 352-361 被引量:4
标识
DOI:10.1093/ndt/gfac049
摘要

Stratification of chronic kidney disease (CKD) patients [estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2] at risk for post-contrast acute kidney injury (PC-AKI) following intravenous administration of iodinated contrast media (ICM) is important for clinical decision-making and clinical trial enrollment.The derivation and internal validation cohorts originated from the Second Xiangya Hospital. The external validation cohort was generated from the Xiangya Hospital and the openly accessible database Medical Information Mart for Intensive CareIV. PC-AKI was defined based on the serum creatinine criteria of the Kidney Disease: Improving Global Outcomes (KDIGO). Six feature selection methods were used to identify the most influential predictors from 79 candidate variables. Deep neural networks (DNNs) were used to establish the model and compared with logistic regression analyses. Model discrimination was evaluated by area under the receiver operating characteristic curve (AUC). Low-risk and high-risk cutoff points were set to stratify patients.Among 4218 encounters studied, PC-AKI occurred in 10.3, 10.4 and 11.4% of encounters in the derivation, internal and external validation cohorts, respectively. The 14 variables-based DNN model had significantly better performance than the logistic regression model with AUC being 0.939 (95% confidence interval: 0.916-0.958) and 0.940 (95% confidence interval: 0.909-0.954) in the internal and external validation cohorts, respectively, and showed promising discrimination in subgroup analyses (AUC ≥ 0.800). The observed PC-AKI risks increased significantly from the low- to intermediate- to high-risk group (<1.0 to >50%) and the accuracy of patients not developing PC-AKI was 99% in the low-risk category in both the internal and external validation cohorts.A DNN model using routinely available variables can accurately discriminate the risk of PC-AKI of hospitalized CKD patients following intravenous administration of ICM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蚂蚱完成签到 ,获得积分10
9秒前
yu完成签到 ,获得积分10
18秒前
yangquanquan完成签到,获得积分10
21秒前
23秒前
搞怪人杰发布了新的文献求助10
30秒前
Akim应助sealking采纳,获得10
40秒前
LAN完成签到,获得积分10
1分钟前
天天快乐应助lingduyu采纳,获得10
1分钟前
tingyeh完成签到,获得积分10
1分钟前
cao发布了新的文献求助10
1分钟前
香蕉觅云应助飞_采纳,获得10
1分钟前
小王好饿完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
英俊的铭应助liu采纳,获得10
2分钟前
joanna完成签到,获得积分10
2分钟前
飞_完成签到,获得积分10
2分钟前
2分钟前
2分钟前
飞_发布了新的文献求助10
3分钟前
科研通AI2S应助cao采纳,获得10
3分钟前
3分钟前
4分钟前
liu发布了新的文献求助10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
子爵木完成签到 ,获得积分10
4分钟前
科研小刘发布了新的文献求助10
4分钟前
4分钟前
chi完成签到 ,获得积分10
4分钟前
大个应助科研小刘采纳,获得10
4分钟前
迷你的靖雁完成签到,获得积分10
5分钟前
乐乐完成签到,获得积分10
5分钟前
5分钟前
淡然平蓝发布了新的文献求助10
5分钟前
5分钟前
5分钟前
天才小熊猫完成签到,获得积分10
5分钟前
jiangchuansm发布了新的文献求助20
5分钟前
6分钟前
科研小刘发布了新的文献求助10
6分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806945
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314