Development and validation of a deep neural network–based model to predict acute kidney injury following intravenous administration of iodinated contrast media in hospitalized patients with chronic kidney disease: a multicohort analysis

医学 肾功能 逻辑回归 肾脏疾病 置信区间 接收机工作特性 急性肾损伤 内科学 肌酐 曲线下面积
作者
Ping Yan,Shao-Bin Duan,Xiaoqin Luo,Ning-Ya Zhang,Ying-Hao Deng
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:38 (2): 352-361 被引量:4
标识
DOI:10.1093/ndt/gfac049
摘要

Stratification of chronic kidney disease (CKD) patients [estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2] at risk for post-contrast acute kidney injury (PC-AKI) following intravenous administration of iodinated contrast media (ICM) is important for clinical decision-making and clinical trial enrollment.The derivation and internal validation cohorts originated from the Second Xiangya Hospital. The external validation cohort was generated from the Xiangya Hospital and the openly accessible database Medical Information Mart for Intensive CareIV. PC-AKI was defined based on the serum creatinine criteria of the Kidney Disease: Improving Global Outcomes (KDIGO). Six feature selection methods were used to identify the most influential predictors from 79 candidate variables. Deep neural networks (DNNs) were used to establish the model and compared with logistic regression analyses. Model discrimination was evaluated by area under the receiver operating characteristic curve (AUC). Low-risk and high-risk cutoff points were set to stratify patients.Among 4218 encounters studied, PC-AKI occurred in 10.3, 10.4 and 11.4% of encounters in the derivation, internal and external validation cohorts, respectively. The 14 variables-based DNN model had significantly better performance than the logistic regression model with AUC being 0.939 (95% confidence interval: 0.916-0.958) and 0.940 (95% confidence interval: 0.909-0.954) in the internal and external validation cohorts, respectively, and showed promising discrimination in subgroup analyses (AUC ≥ 0.800). The observed PC-AKI risks increased significantly from the low- to intermediate- to high-risk group (<1.0 to >50%) and the accuracy of patients not developing PC-AKI was 99% in the low-risk category in both the internal and external validation cohorts.A DNN model using routinely available variables can accurately discriminate the risk of PC-AKI of hospitalized CKD patients following intravenous administration of ICM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奶茶完成签到,获得积分10
1秒前
粗暴的醉卉完成签到 ,获得积分10
1秒前
小二郎应助OPV采纳,获得10
1秒前
2秒前
2秒前
可乐完成签到 ,获得积分10
2秒前
3秒前
leeSongha完成签到 ,获得积分10
3秒前
4秒前
LEle发布了新的文献求助10
4秒前
情怀应助科研小白采纳,获得10
5秒前
6秒前
Jack祺完成签到 ,获得积分10
7秒前
7秒前
小二郎应助Darling采纳,获得10
7秒前
周至发布了新的文献求助30
8秒前
二枫忆桑完成签到,获得积分10
8秒前
别叫我吃饭饭饭完成签到 ,获得积分10
8秒前
8秒前
唐文硕发布了新的文献求助10
8秒前
8秒前
郭郭发布了新的文献求助10
9秒前
小马甲应助zzzpf采纳,获得10
10秒前
12秒前
华仔应助CXJ采纳,获得10
12秒前
wangzilu发布了新的文献求助50
12秒前
郭亮完成签到 ,获得积分20
12秒前
ghx发布了新的文献求助10
14秒前
顾矜应助ballball233采纳,获得10
14秒前
wang11完成签到,获得积分10
15秒前
初空月儿完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助30
16秒前
爆米花应助管夜白采纳,获得10
16秒前
寒冷寻桃发布了新的文献求助10
17秒前
xcltzh2517完成签到,获得积分10
18秒前
18秒前
大个应助唐文硕采纳,获得10
18秒前
pig120完成签到 ,获得积分10
19秒前
lllllll完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735045
求助须知:如何正确求助?哪些是违规求助? 5358060
关于积分的说明 15328419
捐赠科研通 4879484
什么是DOI,文献DOI怎么找? 2621957
邀请新用户注册赠送积分活动 1571152
关于科研通互助平台的介绍 1527932