An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data

可解释性 计算机科学 人工智能 判别式 功能磁共振成像 深度学习 杠杆(统计) 卷积神经网络 模式识别(心理学) 动态功能连接 机器学习 神经科学 心理学
作者
Min Zhao,Weizheng Yan,Na Luo,Dongmei Zhi,Zening Fu,Yuhui Du,Shan Yu,Tianzi Jiang,Vince D. Calhoun,Jing Sui
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:78: 102413-102413 被引量:34
标识
DOI:10.1016/j.media.2022.102413
摘要

Functional magnetic resonance imaging (fMRI) as a promising tool to investigate psychotic disorders can be decomposed into useful imaging features such as time courses (TCs) of independent components (ICs) and functional network connectivity (FNC) calculated by TC cross-correlation. TCs reflect the temporal dynamics of brain activity and the FNC characterizes temporal coherence across intrinsic brain networks. Both features have been used as input to deep learning approaches with decent results. However, few studies have tried to leverage their complementary information to learn optimal representations at multiple facets. Motivated by this, we proposed a Hybrid Deep Learning Framework integrating brain Connectivity and Activity (HDLFCA) together by combining convolutional recurrent neural network (C-RNN) and deep neural network (DNN), aiming to improve classification accuracy and interpretability simultaneously. Specifically, C-RNNAM was proposed to extract temporal dynamic dependencies with an attention module (AM) to automatically learn discriminative knowledge from TC nodes, while DNN was applied to identify the most group-discriminative FNC patterns with layer-wise relevance propagation (LRP). Then, both prediction outputs were concatenated to build a new feature matrix, generating the final decision by logistic regression. The effectiveness of HDLFCA was validated on both multi-site schizophrenia (SZ, n ∼ 1100) and public autism datasets (ABIDE, n ∼ 1522) by outperforming 12 alternative models at 2.8-8.9% accuracy, including 8 models using either static FNC or TCs and 4 models using dynamic FNC. Appreciable classification accuracy was achieved for HC vs. SZ (85.3%) and HC vs. Autism (72.4%) respectively. More importantly, the most group-discriminative brain regions can be easily attributed and visualized, providing meaningful biological interpretability and highlighting the great potential of the proposed HDLFCA model in the identification of valid neuroimaging biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助会飞的猪采纳,获得10
刚刚
李健的小迷弟应助courage采纳,获得30
1秒前
1秒前
1秒前
12138的9527发布了新的文献求助10
1秒前
畅跑daily完成签到,获得积分10
3秒前
光亮的孤风完成签到,获得积分20
3秒前
4秒前
星辰大海应助结实白柏采纳,获得10
4秒前
YuchaoJia发布了新的文献求助10
4秒前
5秒前
5秒前
yangben完成签到,获得积分10
6秒前
azusa发布了新的文献求助10
6秒前
希望天下0贩的0应助winux007采纳,获得30
7秒前
7秒前
7秒前
8秒前
8秒前
w11完成签到,获得积分10
9秒前
yookia应助Gin采纳,获得10
9秒前
年轻采波完成签到,获得积分10
10秒前
所所应助祖琦采纳,获得10
10秒前
椿·发布了新的文献求助10
11秒前
11秒前
会飞的猪发布了新的文献求助10
11秒前
阳光下的微风完成签到,获得积分10
12秒前
梦想家发布了新的文献求助10
12秒前
13秒前
13秒前
老肥完成签到,获得积分10
14秒前
14秒前
无花果应助YuchaoJia采纳,获得10
14秒前
ajuehdj完成签到,获得积分10
15秒前
Fang发布了新的文献求助10
15秒前
年轻采波发布了新的文献求助10
15秒前
万能图书馆应助橘涂采纳,获得10
16秒前
liun完成签到,获得积分10
16秒前
优雅寒凡发布了新的文献求助10
16秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961980
求助须知:如何正确求助?哪些是违规求助? 3508280
关于积分的说明 11140173
捐赠科研通 3240897
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352