An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data

可解释性 计算机科学 人工智能 判别式 功能磁共振成像 深度学习 杠杆(统计) 卷积神经网络 模式识别(心理学) 动态功能连接 机器学习 神经科学 心理学
作者
Min Zhao,Weizheng Yan,Na Luo,Dongmei Zhi,Zening Fu,Yuhui Du,Shan Yu,Tianzi Jiang,Vince D. Calhoun,Jing Sui
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:78: 102413-102413 被引量:57
标识
DOI:10.1016/j.media.2022.102413
摘要

Functional magnetic resonance imaging (fMRI) as a promising tool to investigate psychotic disorders can be decomposed into useful imaging features such as time courses (TCs) of independent components (ICs) and functional network connectivity (FNC) calculated by TC cross-correlation. TCs reflect the temporal dynamics of brain activity and the FNC characterizes temporal coherence across intrinsic brain networks. Both features have been used as input to deep learning approaches with decent results. However, few studies have tried to leverage their complementary information to learn optimal representations at multiple facets. Motivated by this, we proposed a Hybrid Deep Learning Framework integrating brain Connectivity and Activity (HDLFCA) together by combining convolutional recurrent neural network (C-RNN) and deep neural network (DNN), aiming to improve classification accuracy and interpretability simultaneously. Specifically, C-RNNAM was proposed to extract temporal dynamic dependencies with an attention module (AM) to automatically learn discriminative knowledge from TC nodes, while DNN was applied to identify the most group-discriminative FNC patterns with layer-wise relevance propagation (LRP). Then, both prediction outputs were concatenated to build a new feature matrix, generating the final decision by logistic regression. The effectiveness of HDLFCA was validated on both multi-site schizophrenia (SZ, n ∼ 1100) and public autism datasets (ABIDE, n ∼ 1522) by outperforming 12 alternative models at 2.8-8.9% accuracy, including 8 models using either static FNC or TCs and 4 models using dynamic FNC. Appreciable classification accuracy was achieved for HC vs. SZ (85.3%) and HC vs. Autism (72.4%) respectively. More importantly, the most group-discriminative brain regions can be easily attributed and visualized, providing meaningful biological interpretability and highlighting the great potential of the proposed HDLFCA model in the identification of valid neuroimaging biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lynn发布了新的文献求助10
3秒前
FLyu发布了新的文献求助10
3秒前
4秒前
小蘑菇应助土豆土豆采纳,获得10
4秒前
niNe3YUE应助研友_Ljqal8采纳,获得10
5秒前
长情的海亦完成签到,获得积分10
7秒前
12发布了新的文献求助100
8秒前
9秒前
shiori完成签到,获得积分10
9秒前
隐形曼青应助Jodie采纳,获得10
11秒前
13秒前
郭6666发布了新的文献求助10
15秒前
FLyu完成签到,获得积分10
15秒前
耶椰发布了新的文献求助10
17秒前
12完成签到,获得积分10
17秒前
欣喜的元绿完成签到,获得积分10
22秒前
22秒前
24秒前
26秒前
30秒前
30秒前
huangqian发布了新的文献求助30
30秒前
郭6666完成签到,获得积分10
31秒前
可爱的函函应助lynn采纳,获得10
31秒前
32秒前
草莓能宝宝完成签到 ,获得积分10
33秒前
点凌蝶完成签到,获得积分10
35秒前
丘比特应助朴素的松采纳,获得10
37秒前
inter发布了新的文献求助10
37秒前
43秒前
43秒前
星辰大海应助Wqian采纳,获得10
46秒前
46秒前
50秒前
58秒前
59秒前
科目三应助朴素的松采纳,获得10
1分钟前
Jodie发布了新的文献求助10
1分钟前
1分钟前
Heinrich完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550