清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data

可解释性 计算机科学 人工智能 判别式 功能磁共振成像 深度学习 杠杆(统计) 卷积神经网络 模式识别(心理学) 动态功能连接 机器学习 神经科学 心理学
作者
Min Zhao,Weizheng Yan,Na Luo,Dongmei Zhi,Zening Fu,Yuhui Du,Shan Yu,Tianzi Jiang,Vince D. Calhoun,Jing Sui
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:78: 102413-102413 被引量:57
标识
DOI:10.1016/j.media.2022.102413
摘要

Functional magnetic resonance imaging (fMRI) as a promising tool to investigate psychotic disorders can be decomposed into useful imaging features such as time courses (TCs) of independent components (ICs) and functional network connectivity (FNC) calculated by TC cross-correlation. TCs reflect the temporal dynamics of brain activity and the FNC characterizes temporal coherence across intrinsic brain networks. Both features have been used as input to deep learning approaches with decent results. However, few studies have tried to leverage their complementary information to learn optimal representations at multiple facets. Motivated by this, we proposed a Hybrid Deep Learning Framework integrating brain Connectivity and Activity (HDLFCA) together by combining convolutional recurrent neural network (C-RNN) and deep neural network (DNN), aiming to improve classification accuracy and interpretability simultaneously. Specifically, C-RNNAM was proposed to extract temporal dynamic dependencies with an attention module (AM) to automatically learn discriminative knowledge from TC nodes, while DNN was applied to identify the most group-discriminative FNC patterns with layer-wise relevance propagation (LRP). Then, both prediction outputs were concatenated to build a new feature matrix, generating the final decision by logistic regression. The effectiveness of HDLFCA was validated on both multi-site schizophrenia (SZ, n ∼ 1100) and public autism datasets (ABIDE, n ∼ 1522) by outperforming 12 alternative models at 2.8-8.9% accuracy, including 8 models using either static FNC or TCs and 4 models using dynamic FNC. Appreciable classification accuracy was achieved for HC vs. SZ (85.3%) and HC vs. Autism (72.4%) respectively. More importantly, the most group-discriminative brain regions can be easily attributed and visualized, providing meaningful biological interpretability and highlighting the great potential of the proposed HDLFCA model in the identification of valid neuroimaging biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏天的蜜雪冰城完成签到,获得积分10
13秒前
17秒前
量子星尘发布了新的文献求助10
24秒前
SciGPT应助眯眯眼的山柳采纳,获得10
41秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
小小虾完成签到 ,获得积分10
2分钟前
2分钟前
丘比特应助李小猫采纳,获得10
2分钟前
雨rain完成签到 ,获得积分10
2分钟前
2分钟前
李小猫发布了新的文献求助10
2分钟前
2分钟前
乐乐应助另一种蓝色采纳,获得10
3分钟前
thl发布了新的文献求助10
3分钟前
3分钟前
切尔顿发布了新的文献求助10
3分钟前
泽锦臻完成签到,获得积分10
3分钟前
3分钟前
3分钟前
拾玖发布了新的文献求助10
3分钟前
zzmm发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
小盼虫发布了新的文献求助10
4分钟前
4分钟前
4分钟前
小蘑菇应助眯眯眼的山柳采纳,获得10
4分钟前
丘比特应助另一种蓝色采纳,获得10
4分钟前
两个榴莲完成签到,获得积分0
4分钟前
叶子完成签到 ,获得积分0
4分钟前
Levent完成签到,获得积分10
4分钟前
4分钟前
大医仁心完成签到 ,获得积分10
4分钟前
xiawanren00完成签到,获得积分10
5分钟前
5分钟前
小青加油发布了新的文献求助10
5分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5747039
求助须知:如何正确求助?哪些是违规求助? 5441746
关于积分的说明 15356150
捐赠科研通 4887004
什么是DOI,文献DOI怎么找? 2627560
邀请新用户注册赠送积分活动 1575975
关于科研通互助平台的介绍 1532815