已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data

可解释性 计算机科学 人工智能 判别式 功能磁共振成像 深度学习 杠杆(统计) 卷积神经网络 模式识别(心理学) 动态功能连接 机器学习 神经科学 心理学
作者
Min Zhao,Weizheng Yan,Na Luo,Dongmei Zhi,Zening Fu,Yuhui Du,Shan Yu,Tianzi Jiang,Vince D. Calhoun,Jing Sui
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:78: 102413-102413 被引量:34
标识
DOI:10.1016/j.media.2022.102413
摘要

Functional magnetic resonance imaging (fMRI) as a promising tool to investigate psychotic disorders can be decomposed into useful imaging features such as time courses (TCs) of independent components (ICs) and functional network connectivity (FNC) calculated by TC cross-correlation. TCs reflect the temporal dynamics of brain activity and the FNC characterizes temporal coherence across intrinsic brain networks. Both features have been used as input to deep learning approaches with decent results. However, few studies have tried to leverage their complementary information to learn optimal representations at multiple facets. Motivated by this, we proposed a Hybrid Deep Learning Framework integrating brain Connectivity and Activity (HDLFCA) together by combining convolutional recurrent neural network (C-RNN) and deep neural network (DNN), aiming to improve classification accuracy and interpretability simultaneously. Specifically, C-RNNAM was proposed to extract temporal dynamic dependencies with an attention module (AM) to automatically learn discriminative knowledge from TC nodes, while DNN was applied to identify the most group-discriminative FNC patterns with layer-wise relevance propagation (LRP). Then, both prediction outputs were concatenated to build a new feature matrix, generating the final decision by logistic regression. The effectiveness of HDLFCA was validated on both multi-site schizophrenia (SZ, n ∼ 1100) and public autism datasets (ABIDE, n ∼ 1522) by outperforming 12 alternative models at 2.8-8.9% accuracy, including 8 models using either static FNC or TCs and 4 models using dynamic FNC. Appreciable classification accuracy was achieved for HC vs. SZ (85.3%) and HC vs. Autism (72.4%) respectively. More importantly, the most group-discriminative brain regions can be easily attributed and visualized, providing meaningful biological interpretability and highlighting the great potential of the proposed HDLFCA model in the identification of valid neuroimaging biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让的含海完成签到,获得积分10
3秒前
健忘的金完成签到 ,获得积分10
3秒前
4秒前
5秒前
ZHONGYOUNG发布了新的文献求助10
9秒前
土豆完成签到 ,获得积分10
10秒前
顺心的皮卡丘完成签到 ,获得积分10
12秒前
shuhaha完成签到,获得积分10
13秒前
晓晓来了完成签到,获得积分10
16秒前
lilili完成签到 ,获得积分10
16秒前
小蘑菇应助谦让碧菡采纳,获得10
17秒前
逍遥子0211完成签到,获得积分10
18秒前
丰富源智完成签到,获得积分10
19秒前
唐ZY123发布了新的文献求助10
22秒前
滴嘟滴嘟完成签到 ,获得积分10
23秒前
25秒前
怡然凌柏完成签到 ,获得积分10
26秒前
27秒前
周冯雪完成签到 ,获得积分10
27秒前
28秒前
阔达静曼完成签到 ,获得积分10
28秒前
29秒前
30秒前
诸星大发布了新的文献求助50
31秒前
2220完成签到 ,获得积分10
31秒前
NeuroYue发布了新的文献求助10
33秒前
yinshan完成签到 ,获得积分10
33秒前
帅帅发布了新的文献求助10
33秒前
维维发布了新的文献求助10
34秒前
科研通AI5应助唐ZY123采纳,获得10
35秒前
kikikiki完成签到,获得积分10
36秒前
elmacho完成签到 ,获得积分10
36秒前
dd完成签到,获得积分10
37秒前
卧镁铀钳完成签到 ,获得积分10
37秒前
科研通AI6应助发发采纳,获得10
37秒前
科研通AI6应助发发采纳,获得10
37秒前
38秒前
xiaolong给xiaolong的求助进行了留言
38秒前
Owen应助帅帅采纳,获得10
39秒前
科研通AI6应助NeuroYue采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610291
求助须知:如何正确求助?哪些是违规求助? 4016305
关于积分的说明 12434932
捐赠科研通 3697878
什么是DOI,文献DOI怎么找? 2039077
邀请新用户注册赠送积分活动 1071968
科研通“疑难数据库(出版商)”最低求助积分说明 955614