亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data

可解释性 计算机科学 人工智能 判别式 功能磁共振成像 深度学习 杠杆(统计) 卷积神经网络 模式识别(心理学) 动态功能连接 机器学习 神经科学 心理学
作者
Min Zhao,Weizheng Yan,Na Luo,Dongmei Zhi,Zening Fu,Yuhui Du,Shan Yu,Tianzi Jiang,Vince D. Calhoun,Jing Sui
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:78: 102413-102413 被引量:13
标识
DOI:10.1016/j.media.2022.102413
摘要

Functional magnetic resonance imaging (fMRI) as a promising tool to investigate psychotic disorders can be decomposed into useful imaging features such as time courses (TCs) of independent components (ICs) and functional network connectivity (FNC) calculated by TC cross-correlation. TCs reflect the temporal dynamics of brain activity and the FNC characterizes temporal coherence across intrinsic brain networks. Both features have been used as input to deep learning approaches with decent results. However, few studies have tried to leverage their complementary information to learn optimal representations at multiple facets. Motivated by this, we proposed a Hybrid Deep Learning Framework integrating brain Connectivity and Activity (HDLFCA) together by combining convolutional recurrent neural network (C-RNN) and deep neural network (DNN), aiming to improve classification accuracy and interpretability simultaneously. Specifically, C-RNNAM was proposed to extract temporal dynamic dependencies with an attention module (AM) to automatically learn discriminative knowledge from TC nodes, while DNN was applied to identify the most group-discriminative FNC patterns with layer-wise relevance propagation (LRP). Then, both prediction outputs were concatenated to build a new feature matrix, generating the final decision by logistic regression. The effectiveness of HDLFCA was validated on both multi-site schizophrenia (SZ, n ∼ 1100) and public autism datasets (ABIDE, n ∼ 1522) by outperforming 12 alternative models at 2.8-8.9% accuracy, including 8 models using either static FNC or TCs and 4 models using dynamic FNC. Appreciable classification accuracy was achieved for HC vs. SZ (85.3%) and HC vs. Autism (72.4%) respectively. More importantly, the most group-discriminative brain regions can be easily attributed and visualized, providing meaningful biological interpretability and highlighting the great potential of the proposed HDLFCA model in the identification of valid neuroimaging biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
KSDalton发布了新的文献求助10
1分钟前
Anonyme完成签到,获得积分20
2分钟前
无花果应助celine123采纳,获得10
2分钟前
sora98完成签到 ,获得积分10
2分钟前
Jason李发布了新的文献求助20
3分钟前
3分钟前
尹宁发布了新的文献求助10
3分钟前
Ava应助尹宁采纳,获得10
3分钟前
4分钟前
传奇3应助wZx采纳,获得10
4分钟前
4分钟前
celine123发布了新的文献求助10
4分钟前
4分钟前
wZx发布了新的文献求助10
4分钟前
谦让的慕凝完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
可爱的函函应助gy采纳,获得10
6分钟前
大火烧了毛毛虫完成签到,获得积分10
6分钟前
123完成签到,获得积分10
6分钟前
genomed应助123采纳,获得10
6分钟前
6分钟前
gy发布了新的文献求助10
7分钟前
9分钟前
9分钟前
一杯茶应助科研通管家采纳,获得10
11分钟前
Owen应助动听的梦容采纳,获得10
11分钟前
Omni完成签到,获得积分10
12分钟前
12分钟前
彭于晏应助Omni采纳,获得10
12分钟前
科研通AI2S应助Wei采纳,获得10
13分钟前
李健应助孤独靖柏采纳,获得10
13分钟前
13分钟前
13分钟前
13分钟前
He发布了新的文献求助10
13分钟前
栗子发布了新的文献求助10
13分钟前
一杯茶应助科研通管家采纳,获得10
13分钟前
Omni发布了新的文献求助10
13分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3175785
求助须知:如何正确求助?哪些是违规求助? 2826697
关于积分的说明 7958247
捐赠科研通 2487522
什么是DOI,文献DOI怎么找? 1326000
科研通“疑难数据库(出版商)”最低求助积分说明 634682
版权声明 602771