An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data

可解释性 计算机科学 人工智能 判别式 功能磁共振成像 深度学习 杠杆(统计) 卷积神经网络 模式识别(心理学) 动态功能连接 机器学习 神经科学 心理学
作者
Min Zhao,Weizheng Yan,Na Luo,Dongmei Zhi,Zening Fu,Yuhui Du,Shan Yu,Tianzi Jiang,Vince D. Calhoun,Jing Sui
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:78: 102413-102413 被引量:57
标识
DOI:10.1016/j.media.2022.102413
摘要

Functional magnetic resonance imaging (fMRI) as a promising tool to investigate psychotic disorders can be decomposed into useful imaging features such as time courses (TCs) of independent components (ICs) and functional network connectivity (FNC) calculated by TC cross-correlation. TCs reflect the temporal dynamics of brain activity and the FNC characterizes temporal coherence across intrinsic brain networks. Both features have been used as input to deep learning approaches with decent results. However, few studies have tried to leverage their complementary information to learn optimal representations at multiple facets. Motivated by this, we proposed a Hybrid Deep Learning Framework integrating brain Connectivity and Activity (HDLFCA) together by combining convolutional recurrent neural network (C-RNN) and deep neural network (DNN), aiming to improve classification accuracy and interpretability simultaneously. Specifically, C-RNNAM was proposed to extract temporal dynamic dependencies with an attention module (AM) to automatically learn discriminative knowledge from TC nodes, while DNN was applied to identify the most group-discriminative FNC patterns with layer-wise relevance propagation (LRP). Then, both prediction outputs were concatenated to build a new feature matrix, generating the final decision by logistic regression. The effectiveness of HDLFCA was validated on both multi-site schizophrenia (SZ, n ∼ 1100) and public autism datasets (ABIDE, n ∼ 1522) by outperforming 12 alternative models at 2.8-8.9% accuracy, including 8 models using either static FNC or TCs and 4 models using dynamic FNC. Appreciable classification accuracy was achieved for HC vs. SZ (85.3%) and HC vs. Autism (72.4%) respectively. More importantly, the most group-discriminative brain regions can be easily attributed and visualized, providing meaningful biological interpretability and highlighting the great potential of the proposed HDLFCA model in the identification of valid neuroimaging biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123456发布了新的文献求助10
1秒前
研友_VZG7GZ应助yoogae采纳,获得10
2秒前
2秒前
一二发布了新的文献求助10
3秒前
3秒前
乐观的雅彤完成签到,获得积分10
4秒前
5秒前
嘉欣发布了新的文献求助10
6秒前
XXX发布了新的文献求助10
6秒前
7秒前
yznfly应助wyw采纳,获得30
8秒前
星辰大海应助wyw采纳,获得10
8秒前
9秒前
香蕉觅云应助帮帮我采纳,获得10
9秒前
隐形曼青应助安静的青曼采纳,获得10
9秒前
DHY发布了新的文献求助10
10秒前
LYQ15237208950完成签到,获得积分10
10秒前
11秒前
11秒前
乐乐应助lccccc采纳,获得10
11秒前
11秒前
Ayaka完成签到,获得积分10
11秒前
小杭76应助123456采纳,获得10
13秒前
13秒前
13秒前
闪闪的小土豆完成签到,获得积分10
14秒前
15秒前
Kaito发布了新的文献求助10
15秒前
我是老大应助张正采纳,获得10
16秒前
bab发布了新的文献求助10
16秒前
美满芷云发布了新的文献求助10
16秒前
雪白砖家完成签到 ,获得积分10
18秒前
19秒前
19秒前
zmy发布了新的文献求助10
20秒前
22秒前
CodeCraft应助kiki采纳,获得10
22秒前
大气奄发布了新的文献求助10
23秒前
浮游应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430672
求助须知:如何正确求助?哪些是违规求助? 4543706
关于积分的说明 14188806
捐赠科研通 4462148
什么是DOI,文献DOI怎么找? 2446437
邀请新用户注册赠送积分活动 1437811
关于科研通互助平台的介绍 1414523