An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data

可解释性 计算机科学 人工智能 判别式 功能磁共振成像 深度学习 杠杆(统计) 卷积神经网络 模式识别(心理学) 动态功能连接 机器学习 神经科学 心理学
作者
Min Zhao,Weizheng Yan,Na Luo,Dongmei Zhi,Zening Fu,Yuhui Du,Shan Yu,Tianzi Jiang,Vince D. Calhoun,Jing Sui
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:78: 102413-102413 被引量:57
标识
DOI:10.1016/j.media.2022.102413
摘要

Functional magnetic resonance imaging (fMRI) as a promising tool to investigate psychotic disorders can be decomposed into useful imaging features such as time courses (TCs) of independent components (ICs) and functional network connectivity (FNC) calculated by TC cross-correlation. TCs reflect the temporal dynamics of brain activity and the FNC characterizes temporal coherence across intrinsic brain networks. Both features have been used as input to deep learning approaches with decent results. However, few studies have tried to leverage their complementary information to learn optimal representations at multiple facets. Motivated by this, we proposed a Hybrid Deep Learning Framework integrating brain Connectivity and Activity (HDLFCA) together by combining convolutional recurrent neural network (C-RNN) and deep neural network (DNN), aiming to improve classification accuracy and interpretability simultaneously. Specifically, C-RNNAM was proposed to extract temporal dynamic dependencies with an attention module (AM) to automatically learn discriminative knowledge from TC nodes, while DNN was applied to identify the most group-discriminative FNC patterns with layer-wise relevance propagation (LRP). Then, both prediction outputs were concatenated to build a new feature matrix, generating the final decision by logistic regression. The effectiveness of HDLFCA was validated on both multi-site schizophrenia (SZ, n ∼ 1100) and public autism datasets (ABIDE, n ∼ 1522) by outperforming 12 alternative models at 2.8-8.9% accuracy, including 8 models using either static FNC or TCs and 4 models using dynamic FNC. Appreciable classification accuracy was achieved for HC vs. SZ (85.3%) and HC vs. Autism (72.4%) respectively. More importantly, the most group-discriminative brain regions can be easily attributed and visualized, providing meaningful biological interpretability and highlighting the great potential of the proposed HDLFCA model in the identification of valid neuroimaging biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色碧菡完成签到,获得积分10
刚刚
颖火虫发布了新的文献求助10
1秒前
zq完成签到,获得积分10
1秒前
舒适的初雪完成签到,获得积分10
1秒前
欧科狗完成签到,获得积分10
1秒前
qaqfdmmj发布了新的文献求助10
2秒前
Baize完成签到,获得积分10
2秒前
3秒前
科研通AI6应助hhc采纳,获得10
3秒前
3秒前
任性映秋发布了新的文献求助10
3秒前
走四方发布了新的文献求助20
3秒前
4秒前
刘娇娇完成签到,获得积分10
5秒前
ytzhang0587给SV的求助进行了留言
5秒前
未来科研大佬完成签到,获得积分20
5秒前
QQ完成签到 ,获得积分10
5秒前
5秒前
1911988020发布了新的文献求助10
5秒前
6秒前
最爱吃芒果完成签到,获得积分10
6秒前
orixero应助西西采纳,获得10
6秒前
zhaoyuepu完成签到,获得积分10
7秒前
Zkxxxx发布了新的文献求助10
8秒前
领导范儿应助Tian采纳,获得30
9秒前
小羊发布了新的文献求助10
9秒前
sean完成签到,获得积分10
10秒前
FashionBoy应助锐意采纳,获得10
10秒前
可爱的函函应助Sean采纳,获得10
10秒前
风屿完成签到,获得积分10
10秒前
fwi小白完成签到,获得积分10
10秒前
11秒前
bkagyin应助小灰灰采纳,获得10
11秒前
11秒前
12秒前
今后应助自然的含蕾采纳,获得10
13秒前
大个应助靓丽白桃采纳,获得10
13秒前
13秒前
科研通AI6应助啾啾采纳,获得20
13秒前
赘婿应助Serein采纳,获得10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726