An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data

可解释性 计算机科学 人工智能 判别式 功能磁共振成像 深度学习 杠杆(统计) 卷积神经网络 模式识别(心理学) 动态功能连接 机器学习 神经科学 心理学
作者
Min Zhao,Weizheng Yan,Na Luo,Dongmei Zhi,Zening Fu,Yuhui Du,Shan Yu,Tianzi Jiang,Vince D. Calhoun,Jing Sui
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:78: 102413-102413 被引量:57
标识
DOI:10.1016/j.media.2022.102413
摘要

Functional magnetic resonance imaging (fMRI) as a promising tool to investigate psychotic disorders can be decomposed into useful imaging features such as time courses (TCs) of independent components (ICs) and functional network connectivity (FNC) calculated by TC cross-correlation. TCs reflect the temporal dynamics of brain activity and the FNC characterizes temporal coherence across intrinsic brain networks. Both features have been used as input to deep learning approaches with decent results. However, few studies have tried to leverage their complementary information to learn optimal representations at multiple facets. Motivated by this, we proposed a Hybrid Deep Learning Framework integrating brain Connectivity and Activity (HDLFCA) together by combining convolutional recurrent neural network (C-RNN) and deep neural network (DNN), aiming to improve classification accuracy and interpretability simultaneously. Specifically, C-RNNAM was proposed to extract temporal dynamic dependencies with an attention module (AM) to automatically learn discriminative knowledge from TC nodes, while DNN was applied to identify the most group-discriminative FNC patterns with layer-wise relevance propagation (LRP). Then, both prediction outputs were concatenated to build a new feature matrix, generating the final decision by logistic regression. The effectiveness of HDLFCA was validated on both multi-site schizophrenia (SZ, n ∼ 1100) and public autism datasets (ABIDE, n ∼ 1522) by outperforming 12 alternative models at 2.8-8.9% accuracy, including 8 models using either static FNC or TCs and 4 models using dynamic FNC. Appreciable classification accuracy was achieved for HC vs. SZ (85.3%) and HC vs. Autism (72.4%) respectively. More importantly, the most group-discriminative brain regions can be easily attributed and visualized, providing meaningful biological interpretability and highlighting the great potential of the proposed HDLFCA model in the identification of valid neuroimaging biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡胡完成签到 ,获得积分10
刚刚
yanyan123完成签到,获得积分10
刚刚
隐形元绿发布了新的文献求助10
1秒前
yyy完成签到,获得积分10
1秒前
weirdo完成签到,获得积分10
1秒前
55555完成签到,获得积分10
1秒前
2秒前
小徐801完成签到,获得积分10
3秒前
CQMZY_2025完成签到,获得积分10
4秒前
闫恒发布了新的文献求助30
4秒前
5秒前
5秒前
5秒前
害羞映容发布了新的文献求助10
5秒前
啦啦啦完成签到,获得积分10
5秒前
忧郁的凝竹完成签到,获得积分20
7秒前
香蕉鼠标完成签到 ,获得积分10
7秒前
柳七发布了新的文献求助10
8秒前
麦子完成签到 ,获得积分10
8秒前
9秒前
慕青应助薛喜康采纳,获得30
10秒前
充电宝应助michael采纳,获得10
11秒前
细腻小蜜蜂完成签到,获得积分10
12秒前
planb发布了新的文献求助10
12秒前
kai完成签到,获得积分10
13秒前
14秒前
14秒前
子建发布了新的文献求助10
15秒前
yusi应助大大采纳,获得10
15秒前
16秒前
牛奶糖完成签到,获得积分10
16秒前
17秒前
17秒前
koe发布了新的文献求助10
17秒前
18秒前
brick发布了新的文献求助10
18秒前
农艳宁发布了新的文献求助10
19秒前
缓慢的冰巧完成签到,获得积分10
19秒前
邓谷云完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565888
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693715
捐赠科研通 4592950
什么是DOI,文献DOI怎么找? 2519814
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463370