Data-driven approach to predicting the energy performance of residential buildings using minimal input data

能量(信号处理) 环境科学 计算机科学 工程类 建筑工程 统计 数学
作者
Ji-Hyun Seo,Seo-Hoon Kim,Sung‐Jin Lee,Hakgeun Jeong,Taeyeon Kim,Jonghun Kim
出处
期刊:Building and Environment [Elsevier]
卷期号:214: 108911-108911 被引量:21
标识
DOI:10.1016/j.buildenv.2022.108911
摘要

To achieve carbon neutrality, the South Korean government has been retrofitting existing buildings to reduce their energy consumption. However, existing buildings often lack sufficient information for building energy modeling. In this study, a model was developed for predicting heating energy demand using only information obtained from a preliminary survey. Three different models were considered: multiple linear regression (MLR), artificial neural network (ANN), and support vector regression (SVR). They were then trained with data on old houses of low-income households in South Korea and were used to predict the heating energy demand of individual household units. Different input variables were applied to the initial models to identify target variables and tune the hyperparameters. In tests, ANN was slightly more accurate than SVR. SVR required a shorter total running time (training and prediction), but ANN was 10 times faster than SVR when only prediction was considered. Therefore, ANN was selected. The selected model method takes 0.215 s for 10,000 cases. On the other hand, the previous method takes approximately an hour for one case except time for moving to a field. This shows the suggested method is much faster than the previous one. The proposed model was applied to a case study, and the predicted and true values had a relative error of only 1.40%. The proposed model can be used to predict the heating energy demand of old houses while requiring only the heating area and construction year as inputs. • The purpose is to predict the energy demand of old houses with limited information. • Input variables were selected to reduce work steps using data-driven approaches. • This study considered MLR, ANN, and SVR, and ANN was the optimal model. • Using the developed ANN model can save time and labor. • The suggested model can be applied to an un-tact method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
英俊的铭应助窗外的花筏采纳,获得10
刚刚
花牛完成签到 ,获得积分10
1秒前
酷波er应助2595756226采纳,获得10
1秒前
赵泽鹏完成签到,获得积分20
2秒前
lizhi完成签到,获得积分10
2秒前
macarthur完成签到,获得积分10
2秒前
延陵君应助科研通管家采纳,获得30
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
Zx_1993应助科研通管家采纳,获得20
3秒前
Akim应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得30
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得30
4秒前
勤奋傲云完成签到,获得积分10
4秒前
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
wh应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
JamesPei应助李卓韩采纳,获得10
4秒前
4秒前
小远远应助柠七采纳,获得10
5秒前
丘离发布了新的文献求助10
5秒前
强健的蝴蝶完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600235
求助须知:如何正确求助?哪些是违规求助? 4685911
关于积分的说明 14840612
捐赠科研通 4675789
什么是DOI,文献DOI怎么找? 2538581
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471162