Data-driven approach to predicting the energy performance of residential buildings using minimal input data

能量(信号处理) 环境科学 计算机科学 工程类 建筑工程 统计 数学
作者
Ji-Hyun Seo,Seo-Hoon Kim,Sung‐Jin Lee,Hakgeun Jeong,Taeyeon Kim,Jonghun Kim
出处
期刊:Building and Environment [Elsevier]
卷期号:214: 108911-108911 被引量:21
标识
DOI:10.1016/j.buildenv.2022.108911
摘要

To achieve carbon neutrality, the South Korean government has been retrofitting existing buildings to reduce their energy consumption. However, existing buildings often lack sufficient information for building energy modeling. In this study, a model was developed for predicting heating energy demand using only information obtained from a preliminary survey. Three different models were considered: multiple linear regression (MLR), artificial neural network (ANN), and support vector regression (SVR). They were then trained with data on old houses of low-income households in South Korea and were used to predict the heating energy demand of individual household units. Different input variables were applied to the initial models to identify target variables and tune the hyperparameters. In tests, ANN was slightly more accurate than SVR. SVR required a shorter total running time (training and prediction), but ANN was 10 times faster than SVR when only prediction was considered. Therefore, ANN was selected. The selected model method takes 0.215 s for 10,000 cases. On the other hand, the previous method takes approximately an hour for one case except time for moving to a field. This shows the suggested method is much faster than the previous one. The proposed model was applied to a case study, and the predicted and true values had a relative error of only 1.40%. The proposed model can be used to predict the heating energy demand of old houses while requiring only the heating area and construction year as inputs. • The purpose is to predict the energy demand of old houses with limited information. • Input variables were selected to reduce work steps using data-driven approaches. • This study considered MLR, ANN, and SVR, and ANN was the optimal model. • Using the developed ANN model can save time and labor. • The suggested model can be applied to an un-tact method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
侧耳倾听发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
进步面包笑哈哈完成签到,获得积分10
1秒前
youjiwuji发布了新的文献求助10
1秒前
伶俐耳机发布了新的文献求助10
1秒前
2秒前
mage完成签到,获得积分10
3秒前
huangzr完成签到,获得积分10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
李爱国应助Lyz采纳,获得10
4秒前
hululaoqi完成签到,获得积分10
6秒前
左传琦发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
9秒前
111发布了新的文献求助10
9秒前
11秒前
再见战王发布了新的文献求助10
13秒前
orixero应助111采纳,获得10
13秒前
son发布了新的文献求助10
14秒前
16秒前
16秒前
顾矜应助Xdhcg采纳,获得10
16秒前
汉堡包应助xxl采纳,获得10
17秒前
乐乐应助闲云野鹤采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
wjqgdsvdja完成签到,获得积分10
19秒前
20秒前
黄晓完成签到,获得积分10
20秒前
隐形曼青应助chelsea采纳,获得10
22秒前
牛牛牛应助lotus采纳,获得10
22秒前
wwww完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762020
求助须知:如何正确求助?哪些是违规求助? 5533545
关于积分的说明 15401764
捐赠科研通 4898295
什么是DOI,文献DOI怎么找? 2634801
邀请新用户注册赠送积分活动 1582925
关于科研通互助平台的介绍 1538165