Data-driven approach to predicting the energy performance of residential buildings using minimal input data

能量(信号处理) 环境科学 计算机科学 工程类 建筑工程 统计 数学
作者
Ji-Hyun Seo,Seo-Hoon Kim,Sung‐Jin Lee,Hakgeun Jeong,Taeyeon Kim,Jonghun Kim
出处
期刊:Building and Environment [Elsevier]
卷期号:214: 108911-108911 被引量:21
标识
DOI:10.1016/j.buildenv.2022.108911
摘要

To achieve carbon neutrality, the South Korean government has been retrofitting existing buildings to reduce their energy consumption. However, existing buildings often lack sufficient information for building energy modeling. In this study, a model was developed for predicting heating energy demand using only information obtained from a preliminary survey. Three different models were considered: multiple linear regression (MLR), artificial neural network (ANN), and support vector regression (SVR). They were then trained with data on old houses of low-income households in South Korea and were used to predict the heating energy demand of individual household units. Different input variables were applied to the initial models to identify target variables and tune the hyperparameters. In tests, ANN was slightly more accurate than SVR. SVR required a shorter total running time (training and prediction), but ANN was 10 times faster than SVR when only prediction was considered. Therefore, ANN was selected. The selected model method takes 0.215 s for 10,000 cases. On the other hand, the previous method takes approximately an hour for one case except time for moving to a field. This shows the suggested method is much faster than the previous one. The proposed model was applied to a case study, and the predicted and true values had a relative error of only 1.40%. The proposed model can be used to predict the heating energy demand of old houses while requiring only the heating area and construction year as inputs. • The purpose is to predict the energy demand of old houses with limited information. • Input variables were selected to reduce work steps using data-driven approaches. • This study considered MLR, ANN, and SVR, and ANN was the optimal model. • Using the developed ANN model can save time and labor. • The suggested model can be applied to an un-tact method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无界发布了新的文献求助10
1秒前
Orange应助默鱼采纳,获得10
1秒前
dongxi发布了新的文献求助10
1秒前
1秒前
wise111发布了新的文献求助20
2秒前
万能图书馆应助瞿人雄采纳,获得10
2秒前
可爱大地发布了新的文献求助10
2秒前
研友_nPPXNn完成签到,获得积分10
2秒前
Dreamy发布了新的文献求助10
3秒前
bkagyin应助ZhouZhou采纳,获得10
3秒前
3秒前
momo完成签到 ,获得积分10
3秒前
seven发布了新的文献求助10
4秒前
老温完成签到,获得积分10
4秒前
4秒前
5秒前
大模型应助张坤采纳,获得10
6秒前
8秒前
D&L发布了新的文献求助10
8秒前
8秒前
wloe应助小茗采纳,获得10
9秒前
10秒前
段舍离发布了新的文献求助10
10秒前
11秒前
11秒前
looklook发布了新的文献求助30
11秒前
11秒前
ali完成签到,获得积分10
11秒前
酷波er应助AAAaa采纳,获得10
12秒前
yumieer发布了新的文献求助10
12秒前
轻松的囧发布了新的文献求助10
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
慕青应助zoey采纳,获得10
15秒前
Mireia发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468653
求助须知:如何正确求助?哪些是违规求助? 4571995
关于积分的说明 14333271
捐赠科研通 4498777
什么是DOI,文献DOI怎么找? 2464700
邀请新用户注册赠送积分活动 1453311
关于科研通互助平台的介绍 1427921