Data-driven approach to predicting the energy performance of residential buildings using minimal input data

能量(信号处理) 环境科学 计算机科学 工程类 建筑工程 统计 数学
作者
Ji-Hyun Seo,Seo-Hoon Kim,Sung‐Jin Lee,Hakgeun Jeong,Taeyeon Kim,Jonghun Kim
出处
期刊:Building and Environment [Elsevier]
卷期号:214: 108911-108911 被引量:21
标识
DOI:10.1016/j.buildenv.2022.108911
摘要

To achieve carbon neutrality, the South Korean government has been retrofitting existing buildings to reduce their energy consumption. However, existing buildings often lack sufficient information for building energy modeling. In this study, a model was developed for predicting heating energy demand using only information obtained from a preliminary survey. Three different models were considered: multiple linear regression (MLR), artificial neural network (ANN), and support vector regression (SVR). They were then trained with data on old houses of low-income households in South Korea and were used to predict the heating energy demand of individual household units. Different input variables were applied to the initial models to identify target variables and tune the hyperparameters. In tests, ANN was slightly more accurate than SVR. SVR required a shorter total running time (training and prediction), but ANN was 10 times faster than SVR when only prediction was considered. Therefore, ANN was selected. The selected model method takes 0.215 s for 10,000 cases. On the other hand, the previous method takes approximately an hour for one case except time for moving to a field. This shows the suggested method is much faster than the previous one. The proposed model was applied to a case study, and the predicted and true values had a relative error of only 1.40%. The proposed model can be used to predict the heating energy demand of old houses while requiring only the heating area and construction year as inputs. • The purpose is to predict the energy demand of old houses with limited information. • Input variables were selected to reduce work steps using data-driven approaches. • This study considered MLR, ANN, and SVR, and ANN was the optimal model. • Using the developed ANN model can save time and labor. • The suggested model can be applied to an un-tact method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不会下文献啊完成签到,获得积分10
刚刚
科研通AI2S应助耿大海采纳,获得10
2秒前
2秒前
今后应助www采纳,获得10
3秒前
抽烟不完成签到 ,获得积分10
4秒前
more应助蓝调子采纳,获得20
4秒前
5秒前
默默的金针菇完成签到,获得积分20
7秒前
9秒前
9秒前
10秒前
10秒前
Bblythe完成签到 ,获得积分20
10秒前
11秒前
万能图书馆应助阳光的芯采纳,获得10
11秒前
皮卡丘完成签到 ,获得积分10
12秒前
文舒完成签到,获得积分10
13秒前
acuis发布了新的文献求助10
14秒前
14秒前
Lucy发布了新的文献求助10
14秒前
Sky发布了新的文献求助30
15秒前
15秒前
15秒前
15秒前
hhx完成签到,获得积分10
16秒前
17秒前
gaochunjing发布了新的文献求助10
18秒前
18秒前
科研通AI2S应助田柾国采纳,获得10
18秒前
朱莉完成签到 ,获得积分10
19秒前
完美世界应助腼腆的天奇采纳,获得10
19秒前
111111发布了新的文献求助10
19秒前
饼饼完成签到,获得积分10
20秒前
NexusExplorer应助Sky采纳,获得10
20秒前
20秒前
Mao发布了新的文献求助10
20秒前
wsm完成签到 ,获得积分10
20秒前
21秒前
柔弱成危完成签到 ,获得积分10
22秒前
宋晓蓝发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919