Data-driven approach to predicting the energy performance of residential buildings using minimal input data

能量(信号处理) 环境科学 计算机科学 工程类 建筑工程 统计 数学
作者
Ji-Hyun Seo,Seo-Hoon Kim,Sung‐Jin Lee,Hakgeun Jeong,Taeyeon Kim,Jonghun Kim
出处
期刊:Building and Environment [Elsevier]
卷期号:214: 108911-108911 被引量:21
标识
DOI:10.1016/j.buildenv.2022.108911
摘要

To achieve carbon neutrality, the South Korean government has been retrofitting existing buildings to reduce their energy consumption. However, existing buildings often lack sufficient information for building energy modeling. In this study, a model was developed for predicting heating energy demand using only information obtained from a preliminary survey. Three different models were considered: multiple linear regression (MLR), artificial neural network (ANN), and support vector regression (SVR). They were then trained with data on old houses of low-income households in South Korea and were used to predict the heating energy demand of individual household units. Different input variables were applied to the initial models to identify target variables and tune the hyperparameters. In tests, ANN was slightly more accurate than SVR. SVR required a shorter total running time (training and prediction), but ANN was 10 times faster than SVR when only prediction was considered. Therefore, ANN was selected. The selected model method takes 0.215 s for 10,000 cases. On the other hand, the previous method takes approximately an hour for one case except time for moving to a field. This shows the suggested method is much faster than the previous one. The proposed model was applied to a case study, and the predicted and true values had a relative error of only 1.40%. The proposed model can be used to predict the heating energy demand of old houses while requiring only the heating area and construction year as inputs. • The purpose is to predict the energy demand of old houses with limited information. • Input variables were selected to reduce work steps using data-driven approaches. • This study considered MLR, ANN, and SVR, and ANN was the optimal model. • Using the developed ANN model can save time and labor. • The suggested model can be applied to an un-tact method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋水完成签到,获得积分10
刚刚
1秒前
虎啸山河发布了新的文献求助10
1秒前
Owen应助斯文嫣娆采纳,获得10
1秒前
1秒前
hhhh发布了新的文献求助10
1秒前
1秒前
1秒前
shuqi完成签到,获得积分10
1秒前
章小蒲发布了新的文献求助10
3秒前
3秒前
3秒前
黄花发布了新的文献求助30
3秒前
石油醚完成签到,获得积分10
3秒前
星辰大海应助零碎的岛屿采纳,获得10
3秒前
糕糕发布了新的文献求助10
3秒前
开朗问晴完成签到,获得积分10
4秒前
5秒前
FashionBoy应助enen采纳,获得10
5秒前
123完成签到,获得积分10
5秒前
5秒前
Owen应助hellozijia采纳,获得10
5秒前
6秒前
织诗成锦完成签到,获得积分10
6秒前
7秒前
大蛋发布了新的文献求助10
7秒前
12发布了新的文献求助10
7秒前
shuqi发布了新的文献求助30
7秒前
秋水发布了新的文献求助10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
慕青应助开朗问晴采纳,获得10
9秒前
云上人发布了新的文献求助10
10秒前
充电宝应助丫丫采纳,获得10
10秒前
SciGPT应助frank采纳,获得10
11秒前
11秒前
nightmare发布了新的文献求助10
11秒前
11秒前
77发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415536
求助须知:如何正确求助?哪些是违规求助? 4532163
关于积分的说明 14132430
捐赠科研通 4447786
什么是DOI,文献DOI怎么找? 2439866
邀请新用户注册赠送积分活动 1431907
关于科研通互助平台的介绍 1409459