Data-driven approach to predicting the energy performance of residential buildings using minimal input data

能量(信号处理) 环境科学 计算机科学 工程类 建筑工程 统计 数学
作者
Ji-Hyun Seo,Seo-Hoon Kim,Sung‐Jin Lee,Hakgeun Jeong,Taeyeon Kim,Jonghun Kim
出处
期刊:Building and Environment [Elsevier BV]
卷期号:214: 108911-108911 被引量:21
标识
DOI:10.1016/j.buildenv.2022.108911
摘要

To achieve carbon neutrality, the South Korean government has been retrofitting existing buildings to reduce their energy consumption. However, existing buildings often lack sufficient information for building energy modeling. In this study, a model was developed for predicting heating energy demand using only information obtained from a preliminary survey. Three different models were considered: multiple linear regression (MLR), artificial neural network (ANN), and support vector regression (SVR). They were then trained with data on old houses of low-income households in South Korea and were used to predict the heating energy demand of individual household units. Different input variables were applied to the initial models to identify target variables and tune the hyperparameters. In tests, ANN was slightly more accurate than SVR. SVR required a shorter total running time (training and prediction), but ANN was 10 times faster than SVR when only prediction was considered. Therefore, ANN was selected. The selected model method takes 0.215 s for 10,000 cases. On the other hand, the previous method takes approximately an hour for one case except time for moving to a field. This shows the suggested method is much faster than the previous one. The proposed model was applied to a case study, and the predicted and true values had a relative error of only 1.40%. The proposed model can be used to predict the heating energy demand of old houses while requiring only the heating area and construction year as inputs. • The purpose is to predict the energy demand of old houses with limited information. • Input variables were selected to reduce work steps using data-driven approaches. • This study considered MLR, ANN, and SVR, and ANN was the optimal model. • Using the developed ANN model can save time and labor. • The suggested model can be applied to an un-tact method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助韭黄采纳,获得10
1秒前
2秒前
泉眼完成签到 ,获得积分10
5秒前
CYT完成签到,获得积分10
5秒前
陈晶完成签到 ,获得积分10
8秒前
叛逆黑洞完成签到 ,获得积分10
9秒前
Justtry完成签到,获得积分10
10秒前
房东家的猫完成签到,获得积分10
10秒前
一只五条悟完成签到,获得积分10
11秒前
轩辕剑身完成签到,获得积分10
12秒前
哈桑士完成签到,获得积分10
12秒前
卡牌大师完成签到,获得积分10
15秒前
15秒前
奔铂儿钯完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
yydragen应助爱丽丝采纳,获得60
20秒前
TURBO发布了新的文献求助10
21秒前
流星雨完成签到 ,获得积分10
21秒前
dingdingding完成签到,获得积分10
22秒前
哈桑士发布了新的文献求助20
26秒前
TURBO完成签到,获得积分10
28秒前
风趣霆完成签到,获得积分10
31秒前
白金之星完成签到 ,获得积分10
34秒前
牧青完成签到,获得积分10
34秒前
又又完成签到 ,获得积分10
35秒前
北笙完成签到 ,获得积分10
36秒前
Lucky.完成签到 ,获得积分0
37秒前
Ashley完成签到 ,获得积分10
37秒前
心想事成完成签到 ,获得积分10
39秒前
lsy完成签到 ,获得积分10
40秒前
自然函完成签到 ,获得积分10
40秒前
梅特卡夫完成签到,获得积分10
41秒前
李凯尔完成签到 ,获得积分10
42秒前
影像大侠完成签到,获得积分10
42秒前
Ava应助maoxinnan采纳,获得10
43秒前
大模型应助科研通管家采纳,获得10
43秒前
上官若男应助洁净斑马采纳,获得10
44秒前
45秒前
海森堡完成签到,获得积分10
45秒前
清风完成签到 ,获得积分10
46秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015