已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data-driven approach to predicting the energy performance of residential buildings using minimal input data

能量(信号处理) 环境科学 计算机科学 工程类 建筑工程 统计 数学
作者
Ji-Hyun Seo,Seo-Hoon Kim,Sung‐Jin Lee,Hakgeun Jeong,Taeyeon Kim,Jonghun Kim
出处
期刊:Building and Environment [Elsevier]
卷期号:214: 108911-108911 被引量:21
标识
DOI:10.1016/j.buildenv.2022.108911
摘要

To achieve carbon neutrality, the South Korean government has been retrofitting existing buildings to reduce their energy consumption. However, existing buildings often lack sufficient information for building energy modeling. In this study, a model was developed for predicting heating energy demand using only information obtained from a preliminary survey. Three different models were considered: multiple linear regression (MLR), artificial neural network (ANN), and support vector regression (SVR). They were then trained with data on old houses of low-income households in South Korea and were used to predict the heating energy demand of individual household units. Different input variables were applied to the initial models to identify target variables and tune the hyperparameters. In tests, ANN was slightly more accurate than SVR. SVR required a shorter total running time (training and prediction), but ANN was 10 times faster than SVR when only prediction was considered. Therefore, ANN was selected. The selected model method takes 0.215 s for 10,000 cases. On the other hand, the previous method takes approximately an hour for one case except time for moving to a field. This shows the suggested method is much faster than the previous one. The proposed model was applied to a case study, and the predicted and true values had a relative error of only 1.40%. The proposed model can be used to predict the heating energy demand of old houses while requiring only the heating area and construction year as inputs. • The purpose is to predict the energy demand of old houses with limited information. • Input variables were selected to reduce work steps using data-driven approaches. • This study considered MLR, ANN, and SVR, and ANN was the optimal model. • Using the developed ANN model can save time and labor. • The suggested model can be applied to an un-tact method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
撒旦asd发布了新的文献求助10
刚刚
机智的嘻嘻完成签到 ,获得积分10
1秒前
2秒前
xch完成签到,获得积分10
2秒前
4秒前
lyncee完成签到,获得积分10
4秒前
Lucas应助发的不太好采纳,获得10
5秒前
nono完成签到 ,获得积分10
7秒前
梨凉完成签到,获得积分10
7秒前
yangy0519完成签到,获得积分20
7秒前
科研通AI6.1应助开心夏真采纳,获得10
8秒前
英俊的铭应助添添采纳,获得10
11秒前
14秒前
15秒前
汉堡包应助财荫夹印采纳,获得10
16秒前
科研通AI6.1应助Oscillator采纳,获得10
17秒前
妖妖灵1111完成签到 ,获得积分10
20秒前
yanni发布了新的文献求助30
21秒前
李健应助Cl采纳,获得10
21秒前
21秒前
寻道图强应助科研通管家采纳,获得50
22秒前
22秒前
科研之路完成签到,获得积分10
23秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
寻道图强应助科研通管家采纳,获得50
25秒前
25秒前
wanci应助科研通管家采纳,获得10
25秒前
汉堡包应助科研通管家采纳,获得10
25秒前
水shui完成签到,获得积分10
26秒前
木子完成签到 ,获得积分10
27秒前
开心夏真发布了新的文献求助10
27秒前
28秒前
聪明勇敢有力气完成签到 ,获得积分10
29秒前
糊涂涂完成签到 ,获得积分10
35秒前
lc发布了新的文献求助10
40秒前
40秒前
40秒前
Oscillator发布了新的文献求助10
42秒前
aaaa完成签到,获得积分20
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772121
求助须知:如何正确求助?哪些是违规求助? 5596217
关于积分的说明 15429142
捐赠科研通 4905232
什么是DOI,文献DOI怎么找? 2639279
邀请新用户注册赠送积分活动 1587204
关于科研通互助平台的介绍 1542058