Data-driven approach to predicting the energy performance of residential buildings using minimal input data

能量(信号处理) 环境科学 计算机科学 工程类 建筑工程 统计 数学
作者
Ji-Hyun Seo,Seo-Hoon Kim,Sung‐Jin Lee,Hakgeun Jeong,Taeyeon Kim,Jonghun Kim
出处
期刊:Building and Environment [Elsevier]
卷期号:214: 108911-108911 被引量:21
标识
DOI:10.1016/j.buildenv.2022.108911
摘要

To achieve carbon neutrality, the South Korean government has been retrofitting existing buildings to reduce their energy consumption. However, existing buildings often lack sufficient information for building energy modeling. In this study, a model was developed for predicting heating energy demand using only information obtained from a preliminary survey. Three different models were considered: multiple linear regression (MLR), artificial neural network (ANN), and support vector regression (SVR). They were then trained with data on old houses of low-income households in South Korea and were used to predict the heating energy demand of individual household units. Different input variables were applied to the initial models to identify target variables and tune the hyperparameters. In tests, ANN was slightly more accurate than SVR. SVR required a shorter total running time (training and prediction), but ANN was 10 times faster than SVR when only prediction was considered. Therefore, ANN was selected. The selected model method takes 0.215 s for 10,000 cases. On the other hand, the previous method takes approximately an hour for one case except time for moving to a field. This shows the suggested method is much faster than the previous one. The proposed model was applied to a case study, and the predicted and true values had a relative error of only 1.40%. The proposed model can be used to predict the heating energy demand of old houses while requiring only the heating area and construction year as inputs. • The purpose is to predict the energy demand of old houses with limited information. • Input variables were selected to reduce work steps using data-driven approaches. • This study considered MLR, ANN, and SVR, and ANN was the optimal model. • Using the developed ANN model can save time and labor. • The suggested model can be applied to an un-tact method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜完成签到 ,获得积分10
1秒前
Liyuan发布了新的文献求助10
2秒前
2秒前
2秒前
无花果应助二悬铃木采纳,获得10
2秒前
2秒前
3秒前
Lucas应助超人不会飞采纳,获得10
3秒前
gq0401完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
zcl应助科研通管家采纳,获得50
3秒前
bonnie应助科研通管家采纳,获得30
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
Bao应助科研通管家采纳,获得20
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
汉青完成签到,获得积分10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
Loooong应助科研通管家采纳,获得20
4秒前
科目三应助科研通管家采纳,获得10
4秒前
略略略爱完成签到 ,获得积分10
4秒前
4秒前
852应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
QQ发布了新的文献求助10
5秒前
xyy001完成签到,获得积分10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
nnnnnnxh发布了新的文献求助10
5秒前
5秒前
顺利晓蓝完成签到,获得积分10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
LINGYUAN1991应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
lyaz应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406