Peeling under large bending deformations: Follower versus fixed loads. A unified approach for concentrated or distributed loads

机械 垂直的 材料科学 耗散系统 条状物 消散 临界载荷 工作(物理) 弯曲 刚度 弹性能 剪切(地质) 物理 几何学 数学 复合材料 屈曲 热力学
作者
Ettore Barbieri,Lorenzo Botto
出处
期刊:International Journal of Solids and Structures [Elsevier]
卷期号:241: 111450-111450
标识
DOI:10.1016/j.ijsolstr.2022.111450
摘要

In the non-dissipative regime, the potential energy is the difference between the strain energy of the deforming solid and the work done by the external forces. For configuration-dependent external forces, whose direction is perpendicular to the deformed shape, we obtain a simple formula for the strain energy release rate of peeled strips experiencing large deformations and prove rigorously that the same formula applies for external forces having fixed direction. We then apply Griffith’s criterion for fracture to calculate critical loads for two cases: peeling produced by a uniform follower pressure distributed along the flexible strip and peeling produced by a localized follower shear force applied at the edge of the strip. We found that for these loads, the critical pressure for peeling follows approximately q c ∼ Γ L − 1 , where Γ is the solid–solid interface energy and L is the initial peeling length; for the shear force, the corresponding critical value instead follows Q 0 c ∼ Γ , independently of the initial length. These formulas are, unexpectedly, independent of the bending stiffness E I of the strips and differ from the ones predicted for small deformations, i.e. q c ∝ L − 2 E I Γ and Q 0 c ∝ L − 1 E I Γ . We apply our results to predict the critical hydrodynamic load necessary to exfoliate graphene sheets from graphite, a fluid–structure interaction problem where the load is of the follower type. We find that a follower load peeling model gives significantly improved predictions than fixed load peeling. For the same Γ , L and b , the critical hydrodynamic follower load is always lower than the one with fixed forces: approximately half for the case with uniform pressure, and one third for the case with shear force.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yty发布了新的文献求助10
刚刚
烟花应助卡夫卡没在海边采纳,获得10
1秒前
456发布了新的文献求助10
2秒前
传奇3应助温暖以蓝采纳,获得10
2秒前
辛勤的仰完成签到,获得积分10
2秒前
如意新晴完成签到,获得积分10
2秒前
2秒前
zrk完成签到,获得积分20
3秒前
3秒前
szmsnail发布了新的文献求助20
3秒前
Ava应助Monik采纳,获得10
3秒前
打打应助zhui采纳,获得10
4秒前
4秒前
中华有为发布了新的文献求助10
5秒前
yana完成签到,获得积分10
5秒前
科目三应助卡卡采纳,获得10
5秒前
6秒前
XHZGG完成签到 ,获得积分10
7秒前
aiming完成签到,获得积分10
8秒前
shengChen发布了新的文献求助10
8秒前
热心的皮完成签到 ,获得积分10
8秒前
hhhhhhan616完成签到,获得积分10
8秒前
尉迟明风完成签到 ,获得积分10
8秒前
珲雯完成签到,获得积分10
8秒前
xinxin发布了新的文献求助10
9秒前
朱孝培完成签到,获得积分10
9秒前
247793325发布了新的文献求助20
9秒前
加油呀完成签到,获得积分10
9秒前
聪明可爱小绘理完成签到,获得积分10
9秒前
36456657应助啱啱采纳,获得10
9秒前
桐桐应助韦威风采纳,获得10
10秒前
10秒前
10秒前
zc98完成签到,获得积分10
11秒前
ygr应助Hao采纳,获得10
11秒前
NEMO发布了新的文献求助10
12秒前
李爱国应助神勇的戒指采纳,获得10
12秒前
13秒前
思源应助kekao采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794