Discovery of multi-target mur enzymes inhibitors with anti-mycobacterial activity through a Scaffold approach

对接(动物) 化学 生物信息学 分子动力学 小分子 生物化学 计算生物学 配体(生物化学) 立体化学
作者
Madhulata Kumari,Mohd Waseem,Naidu Subbarao
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-22
标识
DOI:10.1080/07391102.2022.2040593
摘要

In the present study, we generated a ligand-based scaffold model from a known bioactive datasets of mur enzymes of other species to identify multi-targeting inhibitors as antitubercular agents. Compounds in the ChEMBL database were first filtered to screen for substructure molecules ofMtb's multi-target enzymes. 5'-O-(5-Amino-5-deoxy-β-D-ribofuranosyl)uridine has been identified as scaffold to develop compounds targeting Mtb's mur enzymes. A library of Murcko scaffolds was extracted and evaluated for their in-silico antitubercular activity against Mtb's mur enzymes. The screened compounds were subjected to molecular docking, molecular dynamics simulations, MM/PBSA calculation with Mtb's mur enzymes to evaluate the mechanism of interaction to assess inhibitory activity against the target protein. The results revealed that 15 compounds have higher docking scores and good interactions with multiple mur enzymes of Mtb. From the docking analysis, compound HPT had the best score and binding affinity with the all mur enzymes. Further, protein-ligand interactions were evaluated by molecular dynamics simulations to assess their stability throughout 100 ns period. From the MD trajectory, we calculated RMSD, RMSF, Rg, PCA, DCCM, FEL, hydrogen bonding, and vector motion. Furthermore, the binding free energies of the all nine mur enzymes with compound HPT exhibited good binding affinity might show the anti-mycobacterial activity. The compound HPT revealed from this computational study could act as potent anti-mycobacterial inhibitors and further serve as lead scaffolds to develop more potent pharmaceutical molecules targeting multiple mur enzymes of Mtb based on 5'-O-(5-Amino-5-deoxy-β-D-ribofuranosyl)uridine in the future. Communicated by Ramaswamy H. Sarma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
彭于晏应助pgg采纳,获得10
2秒前
所所应助Linica采纳,获得10
4秒前
4秒前
花痴的骁完成签到,获得积分10
4秒前
latiao99应助liuzengzhang666采纳,获得10
5秒前
湜迩发布了新的文献求助10
6秒前
6秒前
7秒前
ZHIXIANGWENG发布了新的文献求助10
7秒前
7秒前
8秒前
pony完成签到,获得积分10
9秒前
quanjiazhi发布了新的文献求助10
9秒前
执着完成签到,获得积分10
9秒前
马剑完成签到,获得积分10
10秒前
10秒前
gb2312发布了新的文献求助10
11秒前
iNk应助lingzhi采纳,获得10
11秒前
坚定的铃铛应助HaoHao04采纳,获得10
11秒前
12秒前
暴躁的夏烟应助懋懋采纳,获得10
12秒前
领导范儿应助shy采纳,获得10
13秒前
木易羊发布了新的文献求助10
13秒前
研友_LMg7PZ完成签到,获得积分10
13秒前
orixero应助gumausi采纳,获得10
14秒前
魔幻安筠发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
任1220发布了新的文献求助10
16秒前
完美世界应助cwy采纳,获得10
16秒前
研友_LMg7PZ发布了新的文献求助10
17秒前
陈晚拧发布了新的文献求助10
18秒前
科研通AI5应助奔跑的斌哥采纳,获得10
18秒前
ZHIXIANGWENG发布了新的文献求助10
19秒前
深情安青应助gb2312采纳,获得10
20秒前
沉思猫发布了新的文献求助10
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Green Analytical Methods and Miniaturized Sample Preparation techniques for Forensic Drug Analysis 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561145
求助须知:如何正确求助?哪些是违规求助? 3134912
关于积分的说明 9410275
捐赠科研通 2835309
什么是DOI,文献DOI怎么找? 1558420
邀请新用户注册赠送积分活动 728160
科研通“疑难数据库(出版商)”最低求助积分说明 716722