自愈水凝胶
生物相容性
组织工程
材料科学
聚合物
药物输送
纳米技术
生物降解
天然聚合物
生物医学工程
化学
复合材料
有机化学
高分子化学
工程类
冶金
作者
Denisa-Maria Radulescu,Ionela Andreea Neacșu,Valentina Grumezescu,Ecaterina Andronescu
出处
期刊:Polymers
[MDPI AG]
日期:2022-02-18
卷期号:14 (4): 799-799
被引量:52
标识
DOI:10.3390/polym14040799
摘要
In recent years, biomaterials development and characterization for new applications in regenerative medicine or controlled release represent one of the biggest challenges. Tissue engineering is one of the most intensively studied domain where hydrogels are considered optimum applications in the biomedical field. The delicate nature of hydrogels and their low mechanical strength limit their exploitation in tissue engineering. Hence, developing new, stronger, and more stable hydrogels with increased biocompatibility, is essential. However, both natural and synthetic polymers possess many limitations. Hydrogels based on natural polymers offer particularly high biocompatibility and biodegradability, low immunogenicity, excellent cytocompatibility, variable, and controllable solubility. At the same time, they have poor mechanical properties, high production costs, and low reproducibility. Synthetic polymers come to their aid through superior mechanical strength, high reproducibility, reduced costs, and the ability to regulate their composition to improve processes such as hydrolysis or biodegradation over variable periods. The development of hydrogels based on mixtures of synthetic and natural polymers can lead to the optimization of their properties to obtain ideal scaffolds. Also, incorporating different nanoparticles can improve the hydrogel's stability and obtain several biological effects. In this regard, essential oils and drug molecules facilitate the desired biological effect or even produce a synergistic effect. This study's main purpose is to establish the main properties needed to develop sustainable polymeric scaffolds. These scaffolds can be applied in tissue engineering to improve the tissue regeneration process without producing other side effects to the environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI