Decoupled Metric Network for Single-Stage Few-Shot Object Detection

计算机科学 公制(单位) 人工智能 弹丸 对象(语法) 阶段(地层学) 单发 拓扑(电路) 数学 工程类 组合数学 地质学 材料科学 物理 光学 古生物学 冶金 运营管理
作者
Yue Lu,Xingyu Chen,Zhengxing Wu,Junzhi Yu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 514-525 被引量:28
标识
DOI:10.1109/tcyb.2022.3149825
摘要

Within the last few years, great efforts have been made to study few-shot learning. Although general object detection is advancing at a rapid pace, few-shot detection remains a very challenging problem. In this work, we propose a novel decoupled metric network (DMNet) for single-stage few-shot object detection. We design a decoupled representation transformation (DRT) and an image-level distance metric learning (IDML) to solve the few-shot detection problem. The DRT can eliminate the adverse effect of handcrafted prior knowledge by predicting objectness and anchor shape. Meanwhile, to alleviate the problem of representation disagreement between classification and location (i.e., translational invariance versus translational variance), the DRT adopts a decoupled manner to generate adaptive representations so that the model is easier to learn from only a few training data. As for a few-shot classification in the detection task, we design an IDML tailored to enhance the generalization ability. This module can perform metric learning for the whole visual feature, so it can be more efficient than traditional DML due to the merit of parallel inference for multiobjects. Based on the DRT and IDML, our DMNet efficiently realizes a novel paradigm for few-shot detection, called single-stage metric detection. Experiments are conducted on the PASCAL VOC dataset and the MS COCO dataset. As a result, our method achieves state-of-the-art performance in few-shot object detection. The codes are available at https://github.com/yrqs/DMNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
kanglan发布了新的文献求助10
1秒前
1秒前
情怀应助俊逸的代曼采纳,获得10
2秒前
yk发布了新的文献求助10
2秒前
wzf123456发布了新的文献求助10
2秒前
ssim1122发布了新的文献求助30
3秒前
花傲天的小狗完成签到,获得积分10
4秒前
桐桐应助pingpinghepipi采纳,获得10
4秒前
davyean完成签到,获得积分10
7秒前
8秒前
11秒前
Moonboss发布了新的文献求助10
11秒前
12秒前
乔威完成签到,获得积分10
12秒前
也许发布了新的文献求助10
14秒前
汉堡包应助BAMM采纳,获得10
14秒前
小石头完成签到,获得积分10
14秒前
15秒前
youyang发布了新的文献求助10
15秒前
asdfqwer发布了新的文献求助10
17秒前
爱听歌的靖儿完成签到,获得积分10
18秒前
伍齊发布了新的文献求助10
19秒前
小萧发布了新的文献求助30
19秒前
小二郎应助cookie采纳,获得10
20秒前
124应助猫猫头采纳,获得10
20秒前
迷路飞绿发布了新的文献求助30
21秒前
所所应助竹蜻蜓采纳,获得10
22秒前
糊涂的皮卡丘完成签到 ,获得积分10
23秒前
24秒前
娜写年华完成签到 ,获得积分10
24秒前
26秒前
劲秉应助科研通管家采纳,获得10
27秒前
HCLonely应助科研通管家采纳,获得10
27秒前
思源应助科研通管家采纳,获得10
28秒前
Maliketh应助科研通管家采纳,获得10
28秒前
大模型应助科研通管家采纳,获得10
28秒前
桐桐应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306176
求助须知:如何正确求助?哪些是违规求助? 2939935
关于积分的说明 8495238
捐赠科研通 2614243
什么是DOI,文献DOI怎么找? 1428063
科研通“疑难数据库(出版商)”最低求助积分说明 663239
邀请新用户注册赠送积分活动 648043