Decoupled Metric Network for Single-Stage Few-Shot Object Detection

计算机科学 公制(单位) 人工智能 弹丸 对象(语法) 阶段(地层学) 单发 拓扑(电路) 数学 工程类 组合数学 地质学 材料科学 物理 光学 古生物学 冶金 运营管理
作者
Yue Lu,Xingyu Chen,Zhengxing Wu,Junzhi Yu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 514-525 被引量:28
标识
DOI:10.1109/tcyb.2022.3149825
摘要

Within the last few years, great efforts have been made to study few-shot learning. Although general object detection is advancing at a rapid pace, few-shot detection remains a very challenging problem. In this work, we propose a novel decoupled metric network (DMNet) for single-stage few-shot object detection. We design a decoupled representation transformation (DRT) and an image-level distance metric learning (IDML) to solve the few-shot detection problem. The DRT can eliminate the adverse effect of handcrafted prior knowledge by predicting objectness and anchor shape. Meanwhile, to alleviate the problem of representation disagreement between classification and location (i.e., translational invariance versus translational variance), the DRT adopts a decoupled manner to generate adaptive representations so that the model is easier to learn from only a few training data. As for a few-shot classification in the detection task, we design an IDML tailored to enhance the generalization ability. This module can perform metric learning for the whole visual feature, so it can be more efficient than traditional DML due to the merit of parallel inference for multiobjects. Based on the DRT and IDML, our DMNet efficiently realizes a novel paradigm for few-shot detection, called single-stage metric detection. Experiments are conducted on the PASCAL VOC dataset and the MS COCO dataset. As a result, our method achieves state-of-the-art performance in few-shot object detection. The codes are available at https://github.com/yrqs/DMNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
smile发布了新的文献求助10
1秒前
2秒前
酷炫蚂蚁发布了新的文献求助10
2秒前
2秒前
Andy_Cheung完成签到,获得积分10
2秒前
feng完成签到,获得积分10
3秒前
maomao发布了新的文献求助10
3秒前
leena完成签到,获得积分10
3秒前
3秒前
青衣北风发布了新的文献求助10
4秒前
feng发布了新的文献求助10
4秒前
guygun发布了新的文献求助10
7秒前
小灰灰完成签到,获得积分10
8秒前
8秒前
海鸥海鸥发布了新的文献求助10
9秒前
青衣北风完成签到,获得积分10
9秒前
11秒前
MasterE完成签到,获得积分10
12秒前
我的小伙伴应助feng采纳,获得10
12秒前
善学以致用应助feng采纳,获得10
12秒前
13秒前
13秒前
gaoww发布了新的文献求助10
13秒前
小二发布了新的文献求助10
17秒前
solobang发布了新的文献求助10
18秒前
CodeCraft应助Jocelyn7采纳,获得10
18秒前
秋之月完成签到,获得积分10
18秒前
19秒前
cheche关注了科研通微信公众号
19秒前
20秒前
科研小民工应助kento采纳,获得50
21秒前
完美世界应助小萌采纳,获得10
22秒前
22秒前
gaoww完成签到,获得积分10
22秒前
23秒前
WZ0904发布了新的文献求助10
23秒前
23秒前
lab完成签到 ,获得积分0
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824