亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IOT Based Smart Wastewater Treatment Model for Industry 4.0 Using Artificial Intelligence

流出物 废水 人工神经网络 化学需氧量 污水处理 计算机科学 环境科学 生化工程 工艺工程 废物管理 工程类 环境工程 人工智能
作者
D. Narendar Singh,C Murugamani,Pravin R. Kshirsagar,Vineet Tirth,Saiful Islam,Sana Qaiyum,B Suneela,Mesfer Al Duhayyim,Yosef Asrat Waji
出处
期刊:Scientific Programming [Hindawi Limited]
卷期号:2022: 1-11 被引量:40
标识
DOI:10.1155/2022/5134013
摘要

Wastewater is created by pharma firms and has become a huge worry for the ecosystem. There is a significant amount of toxins that are being dropped continuously from numerous pharmaceutical companies that causes serious damages to the environment and public health because of its comprising high organics as well as inorganic loadings and thus requirements appropriate treatment before final disposal to the ecosystem. Goal of this approach is to treat the wastewater treatment model with industrial data. Algorithms of the artificial neural network (ANN) were employed progressively to predict parameters for wastewater plants. This provision assists users to take remedial measures and function the process by the standards. It is proven as beneficial technology because of its complicated mechanism, dynamic and inconsistent changes in aspects, to overcome some of the limitations of common mathematical models for the wastewater treatment plant. The target is to achieve better prediction accuracy in wastewater treatment model. In this paper, ANN approaches are relevant to the prediction of input and effluent chemical oxygen demand (COD) for effluent treatment procedures. Artificial neural networks (ANNs) offer accurate technique modeling for complex systems using an artificial intelligence technique. Three distinct types of back-propagation ANN were devised to avoid the concentration of wastewater treatment facilities in the concentration of COD, suspended particles, and mixed liquid solids in an epidermal water treatment tank (MLSS). To anticipate COD levels in influential and effluent areas, two ANN-based techniques have been presented. The proper structure for the neural network models was identified via a variety of training and model testing methods. An efficient and robust forecasting tool has been created for the ANN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuli完成签到 ,获得积分10
8秒前
李爱国应助科研通管家采纳,获得10
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
1分钟前
1分钟前
xueshenjianglin完成签到 ,获得积分10
1分钟前
怡然自得发布了新的文献求助10
1分钟前
xueshenjianglin关注了科研通微信公众号
1分钟前
LL完成签到 ,获得积分10
1分钟前
科研通AI6.1应助iiiyyy采纳,获得10
2分钟前
2分钟前
Jason发布了新的文献求助10
2分钟前
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
小yi又困啦完成签到 ,获得积分10
2分钟前
怡然自得完成签到,获得积分10
2分钟前
Eileen完成签到 ,获得积分0
3分钟前
4分钟前
4分钟前
iiiyyy发布了新的文献求助10
4分钟前
oleskarabach发布了新的文献求助10
4分钟前
Ava应助庄严采纳,获得10
5分钟前
kuoping完成签到,获得积分0
6分钟前
oleskarabach发布了新的文献求助10
6分钟前
joker完成签到 ,获得积分0
7分钟前
健康的行天完成签到 ,获得积分10
7分钟前
神山识完成签到,获得积分10
7分钟前
YH完成签到,获得积分10
7分钟前
oleskarabach完成签到,获得积分20
8分钟前
3D完成签到,获得积分10
8分钟前
香蕉觅云应助永远采纳,获得10
8分钟前
小绵羊完成签到 ,获得积分10
8分钟前
有风的地方完成签到 ,获得积分10
8分钟前
8分钟前
黄志伟发布了新的文献求助10
8分钟前
啊哒吸哇完成签到,获得积分10
9分钟前
NattyPoe完成签到,获得积分10
9分钟前
桥西小河完成签到 ,获得积分10
9分钟前
科研通AI6.1应助黄志伟采纳,获得10
10分钟前
科研通AI6.2应助黄志伟采纳,获得10
10分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845384
求助须知:如何正确求助?哪些是违规求助? 6202023
关于积分的说明 15616402
捐赠科研通 4962200
什么是DOI,文献DOI怎么找? 2675324
邀请新用户注册赠送积分活动 1620084
关于科研通互助平台的介绍 1575388