IOT Based Smart Wastewater Treatment Model for Industry 4.0 Using Artificial Intelligence

流出物 废水 人工神经网络 化学需氧量 污水处理 计算机科学 环境科学 生化工程 工艺工程 废物管理 工程类 环境工程 人工智能
作者
D. Narendar Singh,C Murugamani,Pravin R. Kshirsagar,Vineet Tirth,Saiful Islam,Sana Qaiyum,B Suneela,Mesfer Al Duhayyim,Yosef Asrat Waji
出处
期刊:Scientific Programming [Hindawi Limited]
卷期号:2022: 1-11 被引量:20
标识
DOI:10.1155/2022/5134013
摘要

Wastewater is created by pharma firms and has become a huge worry for the ecosystem. There is a significant amount of toxins that are being dropped continuously from numerous pharmaceutical companies that causes serious damages to the environment and public health because of its comprising high organics as well as inorganic loadings and thus requirements appropriate treatment before final disposal to the ecosystem. Goal of this approach is to treat the wastewater treatment model with industrial data. Algorithms of the artificial neural network (ANN) were employed progressively to predict parameters for wastewater plants. This provision assists users to take remedial measures and function the process by the standards. It is proven as beneficial technology because of its complicated mechanism, dynamic and inconsistent changes in aspects, to overcome some of the limitations of common mathematical models for the wastewater treatment plant. The target is to achieve better prediction accuracy in wastewater treatment model. In this paper, ANN approaches are relevant to the prediction of input and effluent chemical oxygen demand (COD) for effluent treatment procedures. Artificial neural networks (ANNs) offer accurate technique modeling for complex systems using an artificial intelligence technique. Three distinct types of back-propagation ANN were devised to avoid the concentration of wastewater treatment facilities in the concentration of COD, suspended particles, and mixed liquid solids in an epidermal water treatment tank (MLSS). To anticipate COD levels in influential and effluent areas, two ANN-based techniques have been presented. The proper structure for the neural network models was identified via a variety of training and model testing methods. An efficient and robust forecasting tool has been created for the ANN model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鸭子应助自然友菱采纳,获得10
刚刚
1秒前
淡淡寡妇发布了新的文献求助30
1秒前
KAKAZhang完成签到,获得积分10
1秒前
3秒前
跳跃语蝶关注了科研通微信公众号
4秒前
天天快乐应助武勇采纳,获得10
5秒前
科研通AI2S应助武勇采纳,获得10
5秒前
科研通AI2S应助武勇采纳,获得10
5秒前
jyy应助武勇采纳,获得10
5秒前
子车茗应助武勇采纳,获得30
5秒前
科研通AI2S应助武勇采纳,获得10
5秒前
Owen应助武勇采纳,获得10
5秒前
852应助武勇采纳,获得10
5秒前
英俊的铭应助武勇采纳,获得10
5秒前
星辰大海应助武勇采纳,获得10
5秒前
勤奋新晴完成签到,获得积分10
6秒前
6秒前
xixi完成签到 ,获得积分20
7秒前
毛豆应助顺利易绿采纳,获得10
8秒前
Lone完成签到,获得积分10
8秒前
LY发布了新的文献求助10
8秒前
wushuqing发布了新的文献求助10
9秒前
9秒前
小叶子完成签到 ,获得积分10
9秒前
kingJames发布了新的文献求助10
9秒前
林生完成签到,获得积分10
10秒前
10秒前
yyds完成签到,获得积分10
11秒前
123567完成签到,获得积分10
11秒前
会飞的鱼发布了新的文献求助10
11秒前
小蘑菇应助风中冷风采纳,获得10
11秒前
帅玉玉发布了新的文献求助10
12秒前
RRRRRRR发布了新的文献求助20
12秒前
从别后忆相逢完成签到 ,获得积分10
13秒前
科研太蓝了完成签到 ,获得积分10
13秒前
丁静完成签到 ,获得积分10
13秒前
iVANPENNY完成签到,获得积分0
13秒前
13秒前
上官聪展完成签到 ,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311803
求助须知:如何正确求助?哪些是违规求助? 2944667
关于积分的说明 8520265
捐赠科研通 2620195
什么是DOI,文献DOI怎么找? 1432715
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650039