IOT Based Smart Wastewater Treatment Model for Industry 4.0 Using Artificial Intelligence

流出物 废水 人工神经网络 化学需氧量 污水处理 计算机科学 环境科学 生化工程 工艺工程 废物管理 工程类 环境工程 人工智能
作者
D. Narendar Singh,C Murugamani,Pravin R. Kshirsagar,Vineet Tirth,Saiful Islam,Sana Qaiyum,B Suneela,Mesfer Al Duhayyim,Yosef Asrat Waji
出处
期刊:Scientific Programming [Hindawi Publishing Corporation]
卷期号:2022: 1-11 被引量:20
标识
DOI:10.1155/2022/5134013
摘要

Wastewater is created by pharma firms and has become a huge worry for the ecosystem. There is a significant amount of toxins that are being dropped continuously from numerous pharmaceutical companies that causes serious damages to the environment and public health because of its comprising high organics as well as inorganic loadings and thus requirements appropriate treatment before final disposal to the ecosystem. Goal of this approach is to treat the wastewater treatment model with industrial data. Algorithms of the artificial neural network (ANN) were employed progressively to predict parameters for wastewater plants. This provision assists users to take remedial measures and function the process by the standards. It is proven as beneficial technology because of its complicated mechanism, dynamic and inconsistent changes in aspects, to overcome some of the limitations of common mathematical models for the wastewater treatment plant. The target is to achieve better prediction accuracy in wastewater treatment model. In this paper, ANN approaches are relevant to the prediction of input and effluent chemical oxygen demand (COD) for effluent treatment procedures. Artificial neural networks (ANNs) offer accurate technique modeling for complex systems using an artificial intelligence technique. Three distinct types of back-propagation ANN were devised to avoid the concentration of wastewater treatment facilities in the concentration of COD, suspended particles, and mixed liquid solids in an epidermal water treatment tank (MLSS). To anticipate COD levels in influential and effluent areas, two ANN-based techniques have been presented. The proper structure for the neural network models was identified via a variety of training and model testing methods. An efficient and robust forecasting tool has been created for the ANN model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会神发布了新的文献求助10
1秒前
共享精神应助童话采纳,获得10
1秒前
1秒前
wang完成签到,获得积分10
1秒前
hky完成签到,获得积分10
1秒前
3秒前
共享精神应助虚拟小号采纳,获得10
3秒前
愉快的宛儿完成签到,获得积分10
3秒前
小小苏荷发布了新的文献求助10
3秒前
淡定的勒发布了新的文献求助10
3秒前
4秒前
4秒前
颜云尔完成签到,获得积分10
5秒前
松谦完成签到,获得积分10
6秒前
爆米花应助YO采纳,获得10
6秒前
6秒前
Davey1220完成签到,获得积分10
7秒前
汉堡包应助holly采纳,获得10
8秒前
我的文献呢应助如意板栗采纳,获得30
8秒前
小巧富发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
JamesPei应助崔崔采纳,获得10
10秒前
害怕的擎宇完成签到,获得积分10
11秒前
小小苏荷完成签到,获得积分10
12秒前
lichanshen发布了新的文献求助10
13秒前
14秒前
MM发布了新的文献求助10
14秒前
Lucas应助会神采纳,获得10
14秒前
认真胜关注了科研通微信公众号
15秒前
laura发布了新的文献求助10
15秒前
干净黄豆发布了新的文献求助10
17秒前
佘炭炭完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
a1313发布了新的文献求助10
20秒前
研友_VZG7GZ应助淡定的半梦采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992562
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262757
捐赠科研通 3273163
什么是DOI,文献DOI怎么找? 1805959
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809513