An improved DV-Hop algorithm for wireless sensor networks based on neural dynamics

算法 Hop(电信) 无线传感器网络 计算机科学 稳健性(进化) 人工神经网络 残余物 人工智能 电信 计算机网络 生物化学 基因 化学
作者
Jingping Liu,Mei Liu,Xiujuan Du,Predrag S. Stanimirovi,Long Jin
出处
期刊:Neurocomputing [Elsevier]
卷期号:491: 172-185 被引量:13
标识
DOI:10.1016/j.neucom.2022.03.050
摘要

Among the localization algorithms of wireless sensor networks (WSNs), the distance vector-hop (DV-Hop) algorithm has been widely concerned thanks to its simplicity, low hardware requirements, and easy implementation. However, the localization accuracy of the DV-Hop algorithm declines greatly when the sensor nodes are unevenly distributed. To improve the accuracy of the DV-Hop algorithm, we propose an improved DV-Hop algorithm based on neural dynamics (ND-DV-Hop). First, the fluctuant range of distance errors between the unknown nodes and the anchor nodes is computed via error analysis. Then, the traditional localization model is transformed into an algebraic equation in which the distances and coordinates change with time. Besides, a neural dynamics (ND) algorithm is used to solve the equation and obtain the solution with the residual errors eliminated. Theoretical analyses are provided to verify the convergence and anti-noise performance of the ND-DV-Hop algorithm. Finally, numerical simulations are carried out to confirm the superiority, efficiency, robustness, and accuracy of the proposed algorithm for dealing with WSNs localization problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿哲完成签到,获得积分10
刚刚
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
刚刚
所所应助科研通管家采纳,获得10
刚刚
y741应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
刚刚
初雪应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
所所应助科研通管家采纳,获得10
刚刚
刚刚
初雪应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
小青椒应助科研通管家采纳,获得10
1秒前
小青椒应助科研通管家采纳,获得50
1秒前
1秒前
思源应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
BowieHuang应助6666采纳,获得10
1秒前
jojoly应助6666采纳,获得10
1秒前
jojoly应助6666采纳,获得10
1秒前
希望天下0贩的0应助6666采纳,获得200
1秒前
认真的小笼包完成签到,获得积分10
1秒前
yyds应助6666采纳,获得50
1秒前
淡淡的天宇完成签到,获得积分10
1秒前
自由飞阳发布了新的文献求助10
1秒前
Lucas应助xiahua采纳,获得10
2秒前
Akim应助醉熏的青筠采纳,获得10
2秒前
默默飞阳发布了新的文献求助10
2秒前
董雪发布了新的文献求助10
2秒前
桐桐应助自由涔采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078