重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

We Know Where They Are Looking at From the RGB-D Camera: Gaze Following in 3D

凝视 人工智能 计算机视觉 计算机科学 RGB颜色模型 推论
作者
Zhengxi Hu,Dingye Yang,Shilei Cheng,Lei Zhou,Shichao Wu,Jingtai Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:11
标识
DOI:10.1109/tim.2022.3160534
摘要

Inferring gaze target or gaze following is an effective way to understand human actions and intentions, which makes quite a challenge. Some existing studies on gaze estimation cannot accurately locate the gaze target in a 3D scene by gaze direction alone, while other studies on gaze following have failed to exploit the contexts in the 3D scene. In this article, we make full use of the information obtained by the RGB-D camera and innovatively expand the gaze target estimation from 2D image to 3D space through the predicted 3D gaze vector. Specifically, we rebuild a new 3D gaze-following dataset, RGB-D Attention dataset, which contains 3D real-world gaze behaviors. In addition, we extend the depth information for the GazeFollow dataset to utilize its diverse scene information in the training process of 3D gaze following. Then, considering the gaze direction as a crucial clue, we propose a novel gaze vector space containing 3D information and a 3D gaze pathway for learning the gaze behavior in the 3D scene. After two-stage training, the entire model can output the predicted 3D gaze vector and the predicted gaze heatmap, which are used to estimate the 3D gaze target in the inference algorithm. Experiments in the 3D scenes show that our method can reduce the predicted average distance error to 0.307 m and the predicted average angle error to 19.8°. Compared with the state-of-the-art gaze inference method, our proposed method has reduced the prediction error by more than 45%. Our web page is at https://sites.google.com/view/3dgazefollow .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助宇宙队采纳,获得10
刚刚
kyle完成签到,获得积分20
刚刚
diaobk发布了新的文献求助10
刚刚
zhang发布了新的文献求助10
刚刚
sunhealth发布了新的文献求助10
刚刚
1秒前
1秒前
传奇3应助西溪采纳,获得10
1秒前
2秒前
YW完成签到,获得积分10
2秒前
2秒前
上官若男应助猪猪hero采纳,获得10
2秒前
bkagyin应助火星上的煜祺采纳,获得10
2秒前
peiyu完成签到,获得积分10
2秒前
荣耀发布了新的文献求助10
2秒前
mufcyang完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
5秒前
浮游应助小熊采纳,获得10
5秒前
xxfsx应助曾丹么么哒采纳,获得20
5秒前
灯灯发布了新的文献求助10
6秒前
kky完成签到 ,获得积分10
6秒前
6秒前
6秒前
顾矜应助master采纳,获得10
7秒前
落寞惮完成签到,获得积分10
7秒前
hdbys发布了新的文献求助30
8秒前
8秒前
8秒前
bqin发布了新的文献求助10
8秒前
8秒前
彭于晏应助活力的妙之采纳,获得10
8秒前
CipherSage应助娜行采纳,获得10
8秒前
8秒前
李健的粉丝团团长应助1111采纳,获得10
8秒前
SciGPT应助安静的尔岚采纳,获得10
8秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466797
求助须知:如何正确求助?哪些是违规求助? 4570521
关于积分的说明 14325828
捐赠科研通 4497083
什么是DOI,文献DOI怎么找? 2463730
邀请新用户注册赠送积分活动 1452656
关于科研通互助平台的介绍 1427590