We Know Where They Are Looking at From the RGB-D Camera: Gaze Following in 3D

凝视 人工智能 计算机视觉 计算机科学 RGB颜色模型 推论
作者
Zhengxi Hu,Dingye Yang,Shilei Cheng,Lei Zhou,Shichao Wu,Jingtai Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:11
标识
DOI:10.1109/tim.2022.3160534
摘要

Inferring gaze target or gaze following is an effective way to understand human actions and intentions, which makes quite a challenge. Some existing studies on gaze estimation cannot accurately locate the gaze target in a 3D scene by gaze direction alone, while other studies on gaze following have failed to exploit the contexts in the 3D scene. In this article, we make full use of the information obtained by the RGB-D camera and innovatively expand the gaze target estimation from 2D image to 3D space through the predicted 3D gaze vector. Specifically, we rebuild a new 3D gaze-following dataset, RGB-D Attention dataset, which contains 3D real-world gaze behaviors. In addition, we extend the depth information for the GazeFollow dataset to utilize its diverse scene information in the training process of 3D gaze following. Then, considering the gaze direction as a crucial clue, we propose a novel gaze vector space containing 3D information and a 3D gaze pathway for learning the gaze behavior in the 3D scene. After two-stage training, the entire model can output the predicted 3D gaze vector and the predicted gaze heatmap, which are used to estimate the 3D gaze target in the inference algorithm. Experiments in the 3D scenes show that our method can reduce the predicted average distance error to 0.307 m and the predicted average angle error to 19.8°. Compared with the state-of-the-art gaze inference method, our proposed method has reduced the prediction error by more than 45%. Our web page is at https://sites.google.com/view/3dgazefollow .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
刚刚
星辰大海应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
北漂盲流完成签到 ,获得积分10
1秒前
烟花应助好HAO采纳,获得10
1秒前
今后应助无昵称采纳,获得10
1秒前
1秒前
2秒前
搜集达人应助John采纳,获得10
2秒前
2秒前
悦铭关注了科研通微信公众号
2秒前
2秒前
lalala发布了新的文献求助10
2秒前
完美世界应助wangchong888采纳,获得10
4秒前
wsgrhrh发布了新的文献求助10
5秒前
6秒前
文右三完成签到,获得积分10
6秒前
懒惰扼杀激情完成签到 ,获得积分10
7秒前
起風了发布了新的文献求助10
7秒前
515发布了新的文献求助10
7秒前
carol7298完成签到 ,获得积分10
8秒前
8秒前
模糊中正应助guoguo采纳,获得30
8秒前
在水一方应助温暖的妙菡采纳,获得10
8秒前
r93527005发布了新的文献求助10
9秒前
kjlee完成签到,获得积分0
9秒前
丘比特应助婷婷采纳,获得10
10秒前
Jasper应助啦啦啦采纳,获得10
10秒前
Suo037完成签到,获得积分0
10秒前
wzc发布了新的文献求助100
11秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327231
求助须知:如何正确求助?哪些是违规求助? 2957505
关于积分的说明 8586074
捐赠科研通 2635600
什么是DOI,文献DOI怎么找? 1442518
科研通“疑难数据库(出版商)”最低求助积分说明 668298
邀请新用户注册赠送积分活动 655230