We Know Where They Are Looking at From the RGB-D Camera: Gaze Following in 3D

凝视 人工智能 计算机视觉 计算机科学 RGB颜色模型 推论
作者
Zhengxi Hu,Dingye Yang,Shilei Cheng,Lei Zhou,Shichao Wu,Jingtai Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:11
标识
DOI:10.1109/tim.2022.3160534
摘要

Inferring gaze target or gaze following is an effective way to understand human actions and intentions, which makes quite a challenge. Some existing studies on gaze estimation cannot accurately locate the gaze target in a 3D scene by gaze direction alone, while other studies on gaze following have failed to exploit the contexts in the 3D scene. In this article, we make full use of the information obtained by the RGB-D camera and innovatively expand the gaze target estimation from 2D image to 3D space through the predicted 3D gaze vector. Specifically, we rebuild a new 3D gaze-following dataset, RGB-D Attention dataset, which contains 3D real-world gaze behaviors. In addition, we extend the depth information for the GazeFollow dataset to utilize its diverse scene information in the training process of 3D gaze following. Then, considering the gaze direction as a crucial clue, we propose a novel gaze vector space containing 3D information and a 3D gaze pathway for learning the gaze behavior in the 3D scene. After two-stage training, the entire model can output the predicted 3D gaze vector and the predicted gaze heatmap, which are used to estimate the 3D gaze target in the inference algorithm. Experiments in the 3D scenes show that our method can reduce the predicted average distance error to 0.307 m and the predicted average angle error to 19.8°. Compared with the state-of-the-art gaze inference method, our proposed method has reduced the prediction error by more than 45%. Our web page is at https://sites.google.com/view/3dgazefollow .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coconut完成签到 ,获得积分10
2秒前
淡然一德完成签到,获得积分10
2秒前
巴豆醇发布了新的文献求助10
2秒前
Xx完成签到 ,获得积分10
4秒前
5秒前
JH发布了新的文献求助10
5秒前
上官以山发布了新的文献求助10
5秒前
刘林发布了新的文献求助10
6秒前
鸣蜩阿六完成签到,获得积分10
6秒前
qyzhu完成签到,获得积分10
6秒前
活力新波应助屠夫9441采纳,获得20
6秒前
yongziwu完成签到,获得积分10
7秒前
闻疏完成签到,获得积分10
8秒前
凝雁完成签到,获得积分10
8秒前
huihui完成签到,获得积分10
9秒前
苒洳完成签到 ,获得积分10
10秒前
负责秋天完成签到,获得积分10
10秒前
10秒前
充电宝应助CHEN采纳,获得10
11秒前
车厘子完成签到 ,获得积分10
13秒前
wjp完成签到 ,获得积分10
14秒前
Cbbb3发布了新的文献求助10
14秒前
曹艳龙发布了新的文献求助10
15秒前
巴豆醇完成签到,获得积分10
16秒前
对方正在看文献完成签到,获得积分10
17秒前
夏夜完成签到 ,获得积分10
18秒前
一只大憨憨猫完成签到,获得积分10
18秒前
19秒前
肖珂完成签到,获得积分10
20秒前
20秒前
逝者如斯只是看着完成签到,获得积分10
23秒前
淡定的白筠完成签到,获得积分10
23秒前
23秒前
黎明完成签到 ,获得积分10
25秒前
小一完成签到,获得积分10
25秒前
蒋50完成签到,获得积分0
25秒前
25秒前
CHEN发布了新的文献求助10
26秒前
zyyyy完成签到,获得积分10
27秒前
陶醉小笼包完成签到 ,获得积分10
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212802
求助须知:如何正确求助?哪些是违规求助? 4388834
关于积分的说明 13664925
捐赠科研通 4249578
什么是DOI,文献DOI怎么找? 2331648
邀请新用户注册赠送积分活动 1329339
关于科研通互助平台的介绍 1282841