On supervised learning to model and predict cattle weight in precision livestock breeding

背景(考古学) 自回归积分移动平均 人工神经网络 自回归模型 数学 计算机科学 统计 人工智能 地理 时间序列 考古
作者
Adriele Giaretta Biase,T. Z. Albertini,Rodrigo Fernandes de Mello
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:195: 106706-106706 被引量:4
标识
DOI:10.1016/j.compag.2022.106706
摘要

Livestock production efficiency is essential to improve the world food chain in terms of making meat available to more people and reducing producer costs, while supporting environmental sustainable solutions. In this context, predicting cattle weights supports the decision making process to optimize the beef cattle supply chain animals and improving feed efficiency. Current body weight analyses are typically performed using predetermined models based on a set of differential equations (e.g. Davis Growth model), however they are not easily adaptable to accept new influencing variables made available in the current technological scenario. This study, proposes two fully adaptable approaches to build up models and forecast cattle body weights while considering related variables (e.g. temperature, atmospheric pressure, global radiation, wind speed, air humidity and dry matter intake (DMI). Our approaches explore two complementary scientific branches: (i) Stochastic Processes, where we employ the Autoregressive Integrated Moving Average (ARIMA) and Seazonal Autoregressive Integrated Moving Average (SARIMA) models only on the variable weight; and, (ii) Deterministic Dynamical Systems, with reconstruct at multidimensional spaces representing the relationships among between daily body weights while being influenced by climatic, management and diet variables. Takens' embeded theorem was used to represent phase spaces, which work as input for a weights regression model based on Multi-Layer Perceptron (MLP) – Artificial Neural Network (ANN) base. A dataset comprising 71 Nelore (Bos indicus) cattle were used in this study and the leave-one-out was used as a cross-validation strategy. Models were evaluated using the Mean-Distance from the Diagonal Line (MDDL) technique. MDDL results for 14,21 and 28 days of prediction were, respectively, for MLP: 0.2216,0.3947 and 0.0025 (with 5 hidden layer neurons). For ARIMA, MDDL results were 0.8763,0.9494 and 0.8299 for 14,21 and 28 days of prediction horizon, respectively; and for SARIMA 0.5912,0.5614 and 0.4884 for 14,21 and 28 days of prediction horizon, respectively. This study demonstrates that by integrating different data sources in a deterministic model, one can predict meat production, surpassing the ARIMA and SARIMA models. Further studies on decomposition analyses to support the individual modeling of animals based on stochastic and deterministic influences are warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助yukuai采纳,获得10
1秒前
CodeCraft应助tomorrow采纳,获得10
2秒前
万能图书馆应助ciooli采纳,获得10
2秒前
搜集达人应助yuebaoji采纳,获得10
2秒前
怡然幻然完成签到,获得积分10
3秒前
姚一发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
Hello应助uglyboy采纳,获得30
4秒前
寒色完成签到,获得积分10
4秒前
5秒前
tt发布了新的文献求助10
5秒前
6秒前
6秒前
tds完成签到,获得积分10
8秒前
8秒前
9秒前
CodeCraft应助zyy采纳,获得10
10秒前
10秒前
11秒前
11秒前
tds发布了新的文献求助10
11秒前
NFCJ完成签到 ,获得积分10
12秒前
ll完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
黄丽珍发布了新的文献求助10
14秒前
坦率的匪举报梧桐求助涉嫌违规
14秒前
ciooli发布了新的文献求助10
14秒前
15秒前
多吃肉发布了新的文献求助10
15秒前
lily发布了新的文献求助10
15秒前
15秒前
16秒前
弄香完成签到,获得积分10
16秒前
李健应助奋斗蜗牛采纳,获得10
16秒前
foceman发布了新的文献求助10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126