On supervised learning to model and predict cattle weight in precision livestock breeding

背景(考古学) 自回归积分移动平均 人工神经网络 自回归模型 数学 计算机科学 统计 人工智能 地理 时间序列 考古
作者
Adriele Giaretta Biase,T. Z. Albertini,Rodrigo Fernandes de Mello
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:195: 106706-106706 被引量:4
标识
DOI:10.1016/j.compag.2022.106706
摘要

Livestock production efficiency is essential to improve the world food chain in terms of making meat available to more people and reducing producer costs, while supporting environmental sustainable solutions. In this context, predicting cattle weights supports the decision making process to optimize the beef cattle supply chain animals and improving feed efficiency. Current body weight analyses are typically performed using predetermined models based on a set of differential equations (e.g. Davis Growth model), however they are not easily adaptable to accept new influencing variables made available in the current technological scenario. This study, proposes two fully adaptable approaches to build up models and forecast cattle body weights while considering related variables (e.g. temperature, atmospheric pressure, global radiation, wind speed, air humidity and dry matter intake (DMI). Our approaches explore two complementary scientific branches: (i) Stochastic Processes, where we employ the Autoregressive Integrated Moving Average (ARIMA) and Seazonal Autoregressive Integrated Moving Average (SARIMA) models only on the variable weight; and, (ii) Deterministic Dynamical Systems, with reconstruct at multidimensional spaces representing the relationships among between daily body weights while being influenced by climatic, management and diet variables. Takens' embeded theorem was used to represent phase spaces, which work as input for a weights regression model based on Multi-Layer Perceptron (MLP) – Artificial Neural Network (ANN) base. A dataset comprising 71 Nelore (Bos indicus) cattle were used in this study and the leave-one-out was used as a cross-validation strategy. Models were evaluated using the Mean-Distance from the Diagonal Line (MDDL) technique. MDDL results for 14,21 and 28 days of prediction were, respectively, for MLP: 0.2216,0.3947 and 0.0025 (with 5 hidden layer neurons). For ARIMA, MDDL results were 0.8763,0.9494 and 0.8299 for 14,21 and 28 days of prediction horizon, respectively; and for SARIMA 0.5912,0.5614 and 0.4884 for 14,21 and 28 days of prediction horizon, respectively. This study demonstrates that by integrating different data sources in a deterministic model, one can predict meat production, surpassing the ARIMA and SARIMA models. Further studies on decomposition analyses to support the individual modeling of animals based on stochastic and deterministic influences are warranted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅莞完成签到,获得积分0
3秒前
谦让的含海完成签到,获得积分10
3秒前
辛勤的囧完成签到,获得积分10
15秒前
MC123完成签到,获得积分10
16秒前
wsafhgfjb完成签到,获得积分10
17秒前
20秒前
黄启烽完成签到,获得积分10
28秒前
文献属于所有科研人关注了科研通微信公众号
33秒前
啦啦啦啦啦完成签到,获得积分10
34秒前
36秒前
凌泉完成签到 ,获得积分10
37秒前
别有乾坤完成签到 ,获得积分10
37秒前
qaplay完成签到 ,获得积分0
38秒前
阿然完成签到,获得积分10
41秒前
天晴完成签到,获得积分10
44秒前
是真的完成签到 ,获得积分10
47秒前
yanmh完成签到,获得积分10
48秒前
kmzzy完成签到 ,获得积分10
53秒前
大汤圆圆完成签到 ,获得积分10
1分钟前
Gavin完成签到,获得积分10
1分钟前
嗡嗡完成签到,获得积分10
1分钟前
壮观的谷冬完成签到 ,获得积分0
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
活泼的南风完成签到,获得积分10
1分钟前
ZSZ完成签到,获得积分10
1分钟前
wei发布了新的文献求助10
1分钟前
是三石啊完成签到 ,获得积分10
1分钟前
xhsz1111完成签到 ,获得积分10
1分钟前
sweet完成签到 ,获得积分10
1分钟前
一一完成签到 ,获得积分10
1分钟前
zz321完成签到,获得积分10
1分钟前
chen完成签到,获得积分10
1分钟前
共享精神应助wei采纳,获得10
1分钟前
万能图书馆应助lzy303886采纳,获得10
1分钟前
星辉的斑斓完成签到 ,获得积分10
1分钟前
SerCheung完成签到,获得积分10
1分钟前
Brave发布了新的文献求助10
1分钟前
zhongxia完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689486
捐赠科研通 4591896
什么是DOI,文献DOI怎么找? 2519388
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463136