清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

On supervised learning to model and predict cattle weight in precision livestock breeding

背景(考古学) 自回归积分移动平均 人工神经网络 自回归模型 数学 计算机科学 统计 人工智能 地理 时间序列 考古
作者
Adriele Giaretta Biase,T. Z. Albertini,Rodrigo Fernandes de Mello
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:195: 106706-106706 被引量:4
标识
DOI:10.1016/j.compag.2022.106706
摘要

Livestock production efficiency is essential to improve the world food chain in terms of making meat available to more people and reducing producer costs, while supporting environmental sustainable solutions. In this context, predicting cattle weights supports the decision making process to optimize the beef cattle supply chain animals and improving feed efficiency. Current body weight analyses are typically performed using predetermined models based on a set of differential equations (e.g. Davis Growth model), however they are not easily adaptable to accept new influencing variables made available in the current technological scenario. This study, proposes two fully adaptable approaches to build up models and forecast cattle body weights while considering related variables (e.g. temperature, atmospheric pressure, global radiation, wind speed, air humidity and dry matter intake (DMI). Our approaches explore two complementary scientific branches: (i) Stochastic Processes, where we employ the Autoregressive Integrated Moving Average (ARIMA) and Seazonal Autoregressive Integrated Moving Average (SARIMA) models only on the variable weight; and, (ii) Deterministic Dynamical Systems, with reconstruct at multidimensional spaces representing the relationships among between daily body weights while being influenced by climatic, management and diet variables. Takens' embeded theorem was used to represent phase spaces, which work as input for a weights regression model based on Multi-Layer Perceptron (MLP) – Artificial Neural Network (ANN) base. A dataset comprising 71 Nelore (Bos indicus) cattle were used in this study and the leave-one-out was used as a cross-validation strategy. Models were evaluated using the Mean-Distance from the Diagonal Line (MDDL) technique. MDDL results for 14,21 and 28 days of prediction were, respectively, for MLP: 0.2216,0.3947 and 0.0025 (with 5 hidden layer neurons). For ARIMA, MDDL results were 0.8763,0.9494 and 0.8299 for 14,21 and 28 days of prediction horizon, respectively; and for SARIMA 0.5912,0.5614 and 0.4884 for 14,21 and 28 days of prediction horizon, respectively. This study demonstrates that by integrating different data sources in a deterministic model, one can predict meat production, surpassing the ARIMA and SARIMA models. Further studies on decomposition analyses to support the individual modeling of animals based on stochastic and deterministic influences are warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谭凯文完成签到 ,获得积分10
6秒前
小猴子完成签到 ,获得积分10
10秒前
科研通AI2S应助Drwenlu采纳,获得10
24秒前
orixero应助gr采纳,获得10
25秒前
32秒前
gr发布了新的文献求助10
37秒前
Singularity应助帮帮我好吗采纳,获得10
48秒前
Kevin完成签到,获得积分10
49秒前
violetlishu完成签到 ,获得积分10
1分钟前
无悔完成签到 ,获得积分10
2分钟前
2分钟前
颖宝老公发布了新的文献求助10
2分钟前
Singularity应助帮帮我好吗采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
毕个业完成签到 ,获得积分10
3分钟前
SciKid524完成签到 ,获得积分10
3分钟前
zhdjj完成签到 ,获得积分10
3分钟前
科研通AI2S应助Migue采纳,获得10
3分钟前
是猪不是猫完成签到,获得积分10
3分钟前
JL完成签到 ,获得积分10
3分钟前
Hasee完成签到 ,获得积分10
3分钟前
Singularity举报繁馥然求助涉嫌违规
4分钟前
4分钟前
阿巴完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
CodeCraft应助lll采纳,获得10
5分钟前
Jenny发布了新的文献求助10
5分钟前
隐形曼青应助石乘云采纳,获得10
5分钟前
6分钟前
hh完成签到 ,获得积分10
6分钟前
DJ_Tokyo完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
石乘云发布了新的文献求助10
7分钟前
草木完成签到,获得积分10
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137034
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784270
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999