RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data

拷贝数变化 生物 RNA序列 转录组 遗传学 计算生物学 基因 染色体 核糖核酸 核型 髓系白血病 基因组 基因表达 癌症研究
作者
Jan Bařinka,Zunsong Hu,Lu Wang,David A. Wheeler,Delaram Rahbarinia,Clay McLeod,Zhaohui Gu,Charles G. Mullighan
出处
期刊:Leukemia [Springer Nature]
卷期号:36 (6): 1492-1498 被引量:24
标识
DOI:10.1038/s41375-022-01547-8
摘要

Transcriptome sequencing (RNA-seq) is widely used to detect gene rearrangements and quantitate gene expression in acute lymphoblastic leukemia (ALL), but its utility and accuracy in identifying copy number variations (CNVs) has not been well described. CNV information inferred from RNA-seq can be highly informative to guide disease classification and risk stratification in ALL due to the high incidence of aneuploid subtypes within this disease. Here we describe RNAseqCNV, a method to detect large scale CNVs from RNA-seq data. We used models based on normalized gene expression and minor allele frequency to classify arm level CNVs with high accuracy in ALL (99.1% overall and 98.3% for non-diploid chromosome arms, respectively), and the models were further validated with excellent performance in acute myeloid leukemia (accuracy 99.8% overall and 99.4% for non-diploid chromosome arms). RNAseqCNV outperforms alternative RNA-seq based algorithms in calling CNVs in the ALL dataset, especially in samples with a high proportion of CNVs. The CNV calls were highly concordant with DNA-based CNV results and more reliable than conventional cytogenetic-based karyotypes. RNAseqCNV provides a method to robustly identify copy number alterations in the absence of DNA-based analyses, further enhancing the utility of RNA-seq to classify ALL subtype.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱听歌完成签到,获得积分10
刚刚
机智的小懒虫完成签到 ,获得积分10
1秒前
1秒前
1秒前
_hcv完成签到,获得积分10
2秒前
唠叨的山槐完成签到,获得积分10
4秒前
4秒前
润华完成签到 ,获得积分10
4秒前
5秒前
5秒前
淞总完成签到 ,获得积分10
5秒前
QZJ666完成签到,获得积分10
5秒前
humorlife完成签到,获得积分10
6秒前
ikki发布了新的文献求助10
8秒前
汉堡包应助老迟的新瑶采纳,获得10
9秒前
派大星发布了新的文献求助10
10秒前
Dr_He应助风是淡淡的云采纳,获得10
10秒前
ding应助壮观的寻凝采纳,获得10
13秒前
chen发布了新的文献求助20
15秒前
leo完成签到,获得积分10
16秒前
肥鲇鱼完成签到,获得积分10
17秒前
19秒前
自转无风完成签到,获得积分10
20秒前
20秒前
小乌龟完成签到,获得积分10
20秒前
21秒前
淡定白易完成签到,获得积分10
23秒前
cqr发布了新的文献求助10
24秒前
24秒前
_hcv发布了新的文献求助10
24秒前
25秒前
派大星完成签到,获得积分10
25秒前
qiiq1997发布了新的文献求助10
26秒前
哦豁应助务实蓝采纳,获得10
26秒前
27秒前
28秒前
早睡早起发布了新的文献求助10
28秒前
阡陌完成签到,获得积分10
29秒前
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023