A Single Model Deep Learning Approach for Alzheimer’s Disease Diagnosis

过度拟合 人工智能 计算机科学 卷积神经网络 深度学习 机器学习 认知障碍 分类器(UML) 模式识别(心理学) 认知 人工神经网络 神经科学 心理学
作者
Fan Zhang,Bo Pan,Pengfei Shao,Peng Liu,Shuwei Shen,Peng Yao,Ronald X. Xu
出处
期刊:Neuroscience [Elsevier]
卷期号:491: 200-214 被引量:26
标识
DOI:10.1016/j.neuroscience.2022.03.026
摘要

Early and accurate diagnosis of Alzheimer's disease (AD) and its prodromal period mild cognitive impairment (MCI) is essential for the delayed disease progression and the improved quality of patients' life. The emerging computer-aided diagnostic methods that combine deep learning with structural magnetic resonance imaging (sMRI) have achieved encouraging results, but some of them are limit of issues such as data leakage, overfitting, and unexplainable diagnosis. In this research, we propose a novel end-to-end deep learning approach for automated diagnosis of AD. This approach has the following differences from the current approaches: (1) Convolutional Neural Network (CNN) models of different structures and capacities are evaluated systemically and the most suitable model is adopted for AD diagnosis; (2) A data augmentation strategy named Two-stage Random RandAugment (TRRA) is proposed to alleviate the overfitting issue caused by limited training data and to improve the classification performance in AD diagnosis; (3) An explainable method of Grad-CAM++ is introduced to generate the visually explainable heatmaps to make our model more transparent. Our approach has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal (CN) and progressive MCI (pMCI) vs. stable MCI (sMCI). The experimental results indicate that our approach outperforms the state-of-the-art approaches, including those using multi-model and three-dimensional (3D) CNN methods. The resultant heatmaps from our approach also highlight the lateral ventricle and some regions of cortex, which have been proved to be affected by AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
3秒前
4秒前
Wendy发布了新的文献求助10
5秒前
爱冒险的妹妹完成签到,获得积分20
6秒前
动听一手完成签到 ,获得积分20
8秒前
刘某人完成签到 ,获得积分10
8秒前
8秒前
9秒前
完美世界应助zfg采纳,获得10
10秒前
Carlos发布了新的文献求助10
10秒前
Snow发布了新的文献求助10
11秒前
动听一手发布了新的文献求助10
12秒前
yoke发布了新的文献求助10
13秒前
烟花应助哈哈哈采纳,获得10
13秒前
芮rich完成签到,获得积分10
13秒前
14秒前
JERRI发布了新的文献求助10
15秒前
15秒前
15秒前
19秒前
Owen应助JY采纳,获得10
20秒前
慕青应助王欢采纳,获得10
20秒前
epar发布了新的文献求助10
21秒前
小姜完成签到,获得积分10
21秒前
21秒前
情怀应助lily采纳,获得10
22秒前
22秒前
不配.给000的求助进行了留言
23秒前
23秒前
田様应助科研小白采纳,获得10
24秒前
沸羊羊完成签到,获得积分10
24秒前
小姜发布了新的文献求助10
25秒前
草上飞完成签到 ,获得积分10
25秒前
Lucas应助JERRI采纳,获得10
25秒前
今后应助ibigbird采纳,获得10
26秒前
百里鬼神发布了新的文献求助20
26秒前
26秒前
高分求助中
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3119973
求助须知:如何正确求助?哪些是违规求助? 2770595
关于积分的说明 7704878
捐赠科研通 2425848
什么是DOI,文献DOI怎么找? 1288246
科研通“疑难数据库(出版商)”最低求助积分说明 620932
版权声明 599998