亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Implementation of chemometrics, design of experiments, and neural network analysis for prior process knowledge assessment, failure modes and effect analysis, scale‐down model development, and process characterization for a chromatographic purification of Teriparatide

计算机科学 过程(计算) 化学计量学 人工神经网络 过程建模 批处理 机器学习 过程分析技术 设计质量 人工智能 数据挖掘 在制品 工程类 运营管理 程序设计语言 操作系统 下游(制造业)
作者
Mili Pathak,Prashant Pokhriyal,Irshad Gandhi,Sridevi Khambhampaty
出处
期刊:Biotechnology Progress [Wiley]
卷期号:38 (3) 被引量:2
标识
DOI:10.1002/btpr.3252
摘要

Abstract Process understanding and characterization forms the foundation, ensuring consistent and robust biologics manufacturing process. Using appropriate modeling tools and machine learning approaches, the process data can be monitored in real time to avoid manufacturing risks. In this article, we have outlined an approach toward implementation of chemometrics and machine learning tools (neural network analysis) to model and predict the behavior of a mixed‐mode chromatography step for a biosimilar (Teriparatide) as a case study. The process development data and process knowledge was assimilated into a prior process knowledge assessment using chemometrics tools to derive important parameters critical to performance indicators (i.e., potential quality and process attributes) and to establish the severity ranking for the FMEA analysis. The characterization data of the chromatographic operation are presented alongwith the determination of the critical, key and non‐ key process parameters, set points, operating, process acceptance and characterized ranges. The scale‐down model establishment was assessed using traditional approaches and novel approaches like batch evolution model and neural network analysis. The batch evolution model was further used to demonstrate batch monitoring through direct chromatographic data, thus demonstrating its application for continuos process verification. Assimilation of process knowledge through a structured data acquisition approach, built‐in from process development to continuous process verification was demonstrated to result in a data analytics driven model that can be coupled with machine learning tools for real time process monitoring. We recommend application of these approaches with the FDA guidance on stage wise process development and validation to reduce manufacturing risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
9秒前
18秒前
24秒前
25秒前
稻子完成签到 ,获得积分10
26秒前
1分钟前
JoeJoe发布了新的文献求助10
1分钟前
行走完成签到,获得积分10
1分钟前
JoeJoe完成签到,获得积分10
1分钟前
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
zzhouao应助四月采纳,获得10
2分钟前
2分钟前
李爱国应助晚安886采纳,获得10
3分钟前
3分钟前
3分钟前
jerseyxue发布了新的文献求助10
3分钟前
pp关注了科研通微信公众号
3分钟前
3分钟前
4分钟前
4分钟前
pp发布了新的文献求助10
4分钟前
从容芮完成签到,获得积分0
4分钟前
科研通AI2S应助jerseyxue采纳,获得10
4分钟前
搜集达人应助康2000采纳,获得30
4分钟前
5分钟前
5分钟前
jerseyxue发布了新的文献求助10
5分钟前
jerseyxue完成签到,获得积分10
5分钟前
超人完成签到 ,获得积分10
6分钟前
6分钟前
康2000发布了新的文献求助30
6分钟前
康2000完成签到,获得积分10
6分钟前
风中一叶完成签到 ,获得积分10
7分钟前
MIMI发布了新的文献求助10
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
紫罗兰花海完成签到 ,获得积分10
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743751
什么是DOI,文献DOI怎么找? 1505214
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867