Identification of tropical cyclones via deep convolutional neural network based on satellite cloud images

卷积神经网络 热带气旋 鉴定(生物学) 云计算 卫星 计算机科学 眼睛 大西洋飓风 人工智能 深度学习 气象学 遥感 领域(数学) 环境科学 地质学 地理 工程类 植物 数学 航空航天工程 纯数学 生物 操作系统
作者
Biao Tong,Xiangfei Sun,Jiyang Fu,Yuncheng He,Pak Wai Chan
出处
期刊:Atmospheric Measurement Techniques [Copernicus Publications]
卷期号:15 (6): 1829-1848 被引量:10
标识
DOI:10.5194/amt-15-1829-2022
摘要

Abstract. Tropical cyclones (TCs) are one of the most destructive natural disasters. For the prevention and mitigation of TC-induced disasters, real-time monitoring and prediction of TCs is essential. At present, satellite cloud images (SCIs) are utilized widely as a basic data source for such studies. Although great achievements have been made in this field, there is a lack of concern about on the identification of TC fingerprints from SCIs, which is usually involved as a prerequisite step for follow-up analyses. This paper presents a methodology which identifies TC fingerprints via deep convolutional neural network (DCNN) techniques based on SCIs of more than 200 TCs over the northwestern Pacific basin. In total, two DCNN models have been proposed and validated, which are able to identify the TCs from not only single TC-featured SCIs but also multiple TC-featured SCIs. Results show that both models can reach 96 % of identification accuracy. As the TC intensity strengthens, the accuracy becomes better. To explore how these models work, heat maps are further extracted and analyzed. Results show that all the fingerprint features are focused on clouds during the testing process. For the majority of the TC images, the cloud features in TC's main parts, i.e., eye, eyewall, and primary rainbands, are most emphasized, reflecting a consistent pattern with the subjective method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nk完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
调皮铸海发布了新的文献求助10
3秒前
风中水风完成签到,获得积分10
3秒前
慕青应助相龙采纳,获得10
4秒前
CipherSage应助QPP采纳,获得10
4秒前
4秒前
kk发布了新的文献求助10
5秒前
nk发布了新的文献求助10
5秒前
nqterysc发布了新的文献求助10
5秒前
5秒前
dyk发布了新的文献求助10
6秒前
ohwhale完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
白日焰火发布了新的文献求助10
8秒前
上官若男应助lxlcx采纳,获得30
9秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
积极的笙发布了新的文献求助10
11秒前
眼睛大的念桃完成签到,获得积分10
12秒前
所所应助Dawn_ZZZ采纳,获得10
12秒前
会飞的猪发布了新的文献求助10
12秒前
wanci应助欢乐佩奇采纳,获得10
14秒前
脚丫当当发布了新的文献求助10
14秒前
巫马尔槐发布了新的文献求助10
15秒前
小布莱克发布了新的文献求助10
15秒前
Ava应助梦想采纳,获得10
16秒前
16秒前
风中水风发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141