Identification of tropical cyclones via deep convolutional neural network based on satellite cloud images

卷积神经网络 热带气旋 鉴定(生物学) 云计算 卫星 计算机科学 眼睛 大西洋飓风 人工智能 深度学习 气象学 遥感 领域(数学) 环境科学 地质学 地理 工程类 植物 数学 航空航天工程 纯数学 生物 操作系统
作者
Biao Tong,Xiangfei Sun,Jiyang Fu,Yuncheng He,Pak Wai Chan
出处
期刊:Atmospheric Measurement Techniques 卷期号:15 (6): 1829-1848 被引量:10
标识
DOI:10.5194/amt-15-1829-2022
摘要

Abstract. Tropical cyclones (TCs) are one of the most destructive natural disasters. For the prevention and mitigation of TC-induced disasters, real-time monitoring and prediction of TCs is essential. At present, satellite cloud images (SCIs) are utilized widely as a basic data source for such studies. Although great achievements have been made in this field, there is a lack of concern about on the identification of TC fingerprints from SCIs, which is usually involved as a prerequisite step for follow-up analyses. This paper presents a methodology which identifies TC fingerprints via deep convolutional neural network (DCNN) techniques based on SCIs of more than 200 TCs over the northwestern Pacific basin. In total, two DCNN models have been proposed and validated, which are able to identify the TCs from not only single TC-featured SCIs but also multiple TC-featured SCIs. Results show that both models can reach 96 % of identification accuracy. As the TC intensity strengthens, the accuracy becomes better. To explore how these models work, heat maps are further extracted and analyzed. Results show that all the fingerprint features are focused on clouds during the testing process. For the majority of the TC images, the cloud features in TC's main parts, i.e., eye, eyewall, and primary rainbands, are most emphasized, reflecting a consistent pattern with the subjective method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fundamental发布了新的文献求助10
1秒前
咩咩发布了新的文献求助10
1秒前
kingmin应助金鸡奖采纳,获得10
1秒前
喜悦蚂蚁完成签到,获得积分10
2秒前
赘婿应助拼搏向前采纳,获得10
2秒前
2秒前
2秒前
路十三完成签到 ,获得积分10
3秒前
Lucas应助Sophia采纳,获得10
4秒前
lan发布了新的文献求助10
4秒前
金容发布了新的文献求助10
4秒前
京阿尼发布了新的文献求助10
5秒前
好久不见发布了新的文献求助10
5秒前
小二郎应助轩辕德地采纳,获得10
5秒前
超级的飞飞完成签到,获得积分10
8秒前
9秒前
9秒前
金容完成签到,获得积分10
10秒前
细雨听风完成签到,获得积分10
10秒前
含糊的白安完成签到,获得积分10
11秒前
迟大猫应助xzn1123采纳,获得30
12秒前
12秒前
12秒前
科研通AI5应助李李采纳,获得50
13秒前
祖f完成签到,获得积分10
13秒前
阿莫西林胶囊完成签到,获得积分10
14秒前
jason完成签到,获得积分10
14秒前
14秒前
科研通AI5应助吴岳采纳,获得10
15秒前
Sheila发布了新的文献求助10
15秒前
甜美的海瑶完成签到,获得积分10
16秒前
16秒前
16秒前
张牧之完成签到 ,获得积分10
16秒前
yuyukeke完成签到,获得积分10
17秒前
17秒前
沉默的婴完成签到 ,获得积分10
17秒前
18秒前
19秒前
Dita完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808