TimeCLR: A self-supervised contrastive learning framework for univariate time series representation

计算机科学 人工智能 单变量 分类器(UML) 时间序列 特征学习 模式识别(心理学) 机器学习 特征(语言学) 提取器 领域(数学) 特征提取 代表(政治) 深度学习 数据挖掘 多元统计 数学 政治 工程类 哲学 语言学 工艺工程 政治学 法学 纯数学
作者
Xinyu Yang,Zhenguo Zhang,Rongyi Cui
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:245: 108606-108606 被引量:37
标识
DOI:10.1016/j.knosys.2022.108606
摘要

Time series are usually rarely or sparsely labeled, which limits the performance of deep learning models. Self-supervised representation learning can reduce the reliance of deep learning models on labeled data by extracting structure and feature information from unlabeled data and improve model performance when labeled data is insufficient. Although SimCLR has achieved impressive success in the computer vision field, direct applying SimCLR to time series field usually performs poorly due to the part of data augmentation and the part of feature extractor not being adapted to the temporal dependencies within the time series data. In order to obtain high-quality time series representations, we propose TimeCLR, a framework which is suitable for univariate time series representation, by combining the advantages of DTW and InceptionTime. Inspired by the DTW-based k-nearest neighbor classifier, we first propose the DTW data augmentation that can generate DTW-targeted phase shift and amplitude change phenomena and retain time series structure and feature information. Inspired by the current state-of-the-art deep learning-based time series classification method, InceptionTime, which has good feature extraction capabilities, we designed a feature extractor capable of generating representations in an end-to-end manner. Finally, combining the advantages of DTW data augmentation and InceptionTime, our proposed TimeCLR method successfully extends SimCLR and applies it to the time series field. We designed a variety of experiments and performed careful ablation studies. Experimental results show that our proposed TimeCLR method can not only achieve comparable performance to supervised InceptionTime on multiple tasks, but also produce better performance than supervised learning models in the case of insufficient labeled data, and can be flexibly applied to univariate time series data from different domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunny完成签到,获得积分10
刚刚
德鲁大叔完成签到,获得积分10
刚刚
小蘑菇应助诺之采纳,获得10
1秒前
一只你个灰完成签到,获得积分10
1秒前
1秒前
火山羊完成签到,获得积分10
3秒前
木木完成签到,获得积分10
3秒前
脑洞疼应助thousandlong采纳,获得10
4秒前
WenzongLai完成签到,获得积分10
4秒前
4秒前
CipherSage应助fsky采纳,获得30
4秒前
酷波er应助紫紫采纳,获得10
4秒前
Owen应助Engen采纳,获得10
5秒前
归尘应助熊熊熊采纳,获得10
5秒前
5秒前
大大怪发布了新的文献求助10
6秒前
黄家琪关注了科研通微信公众号
7秒前
核电站完成签到,获得积分10
7秒前
7秒前
xv完成签到,获得积分10
7秒前
usee完成签到,获得积分10
7秒前
TZMY完成签到,获得积分10
7秒前
8秒前
丘比特应助MM采纳,获得10
8秒前
田様应助JoshuaChen采纳,获得10
9秒前
Ttttt完成签到,获得积分10
9秒前
瘦瘦依白应助爱吃脑袋瓜采纳,获得10
9秒前
哈哈是你发布了新的文献求助10
9秒前
震震发布了新的文献求助20
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
四川南丁格尔完成签到 ,获得积分10
12秒前
Owen应助秋纳瑞采纳,获得10
12秒前
Pan完成签到,获得积分10
12秒前
Lucas应助Jenaloe采纳,获得10
13秒前
仓颉发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582