TimeCLR: A self-supervised contrastive learning framework for univariate time series representation

计算机科学 人工智能 单变量 分类器(UML) 时间序列 特征学习 模式识别(心理学) 机器学习 特征(语言学) 提取器 领域(数学) 特征提取 代表(政治) 深度学习 数据挖掘 多元统计 数学 政治 工程类 哲学 语言学 工艺工程 政治学 法学 纯数学
作者
Xinyu Yang,Zhenguo Zhang,Rongyi Cui
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:245: 108606-108606 被引量:37
标识
DOI:10.1016/j.knosys.2022.108606
摘要

Time series are usually rarely or sparsely labeled, which limits the performance of deep learning models. Self-supervised representation learning can reduce the reliance of deep learning models on labeled data by extracting structure and feature information from unlabeled data and improve model performance when labeled data is insufficient. Although SimCLR has achieved impressive success in the computer vision field, direct applying SimCLR to time series field usually performs poorly due to the part of data augmentation and the part of feature extractor not being adapted to the temporal dependencies within the time series data. In order to obtain high-quality time series representations, we propose TimeCLR, a framework which is suitable for univariate time series representation, by combining the advantages of DTW and InceptionTime. Inspired by the DTW-based k-nearest neighbor classifier, we first propose the DTW data augmentation that can generate DTW-targeted phase shift and amplitude change phenomena and retain time series structure and feature information. Inspired by the current state-of-the-art deep learning-based time series classification method, InceptionTime, which has good feature extraction capabilities, we designed a feature extractor capable of generating representations in an end-to-end manner. Finally, combining the advantages of DTW data augmentation and InceptionTime, our proposed TimeCLR method successfully extends SimCLR and applies it to the time series field. We designed a variety of experiments and performed careful ablation studies. Experimental results show that our proposed TimeCLR method can not only achieve comparable performance to supervised InceptionTime on multiple tasks, but also produce better performance than supervised learning models in the case of insufficient labeled data, and can be flexibly applied to univariate time series data from different domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小新小新发布了新的文献求助10
1秒前
张张张xxx应助Tonsil01采纳,获得10
1秒前
wwwww发布了新的文献求助10
1秒前
nglmy77完成签到 ,获得积分10
3秒前
螳螂腿子完成签到,获得积分10
3秒前
ckxixi发布了新的文献求助10
3秒前
tinatian270完成签到,获得积分10
4秒前
煎蛋公主完成签到 ,获得积分20
5秒前
123456完成签到,获得积分10
5秒前
喜悦斑马完成签到,获得积分10
5秒前
5秒前
6秒前
hutian完成签到,获得积分10
6秒前
6秒前
自由一一应助victhr采纳,获得10
6秒前
科研通AI2S应助星露谷农民采纳,获得10
7秒前
123456发布了新的文献求助10
7秒前
wan_lo发布了新的文献求助10
8秒前
Emiya完成签到,获得积分10
8秒前
10秒前
刘大可完成签到,获得积分10
11秒前
Jasper应助李半斤采纳,获得10
12秒前
打野完成签到,获得积分10
13秒前
13秒前
大山发布了新的文献求助10
13秒前
整齐的大开应助wwwww采纳,获得10
14秒前
14秒前
evisure完成签到,获得积分10
14秒前
自由一一应助坚定天蓝采纳,获得50
15秒前
华仔应助茹茹采纳,获得10
15秒前
alteras完成签到,获得积分10
16秒前
yar应助liuzengzhang666采纳,获得10
17秒前
可爱的函函应助贪玩若剑采纳,获得10
19秒前
lala发布了新的文献求助10
19秒前
Yey完成签到 ,获得积分10
20秒前
20秒前
22秒前
23秒前
23秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304627
求助须知:如何正确求助?哪些是违规求助? 2938626
关于积分的说明 8489303
捐赠科研通 2613106
什么是DOI,文献DOI怎么找? 1427111
科研通“疑难数据库(出版商)”最低求助积分说明 662895
邀请新用户注册赠送积分活动 647487