TimeCLR: A self-supervised contrastive learning framework for univariate time series representation

计算机科学 人工智能 单变量 分类器(UML) 时间序列 特征学习 模式识别(心理学) 机器学习 特征(语言学) 提取器 领域(数学) 特征提取 代表(政治) 深度学习 数据挖掘 多元统计 数学 政治 工程类 哲学 语言学 工艺工程 政治学 法学 纯数学
作者
Xinyu Yang,Zhenguo Zhang,Rongyi Cui
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:245: 108606-108606 被引量:37
标识
DOI:10.1016/j.knosys.2022.108606
摘要

Time series are usually rarely or sparsely labeled, which limits the performance of deep learning models. Self-supervised representation learning can reduce the reliance of deep learning models on labeled data by extracting structure and feature information from unlabeled data and improve model performance when labeled data is insufficient. Although SimCLR has achieved impressive success in the computer vision field, direct applying SimCLR to time series field usually performs poorly due to the part of data augmentation and the part of feature extractor not being adapted to the temporal dependencies within the time series data. In order to obtain high-quality time series representations, we propose TimeCLR, a framework which is suitable for univariate time series representation, by combining the advantages of DTW and InceptionTime. Inspired by the DTW-based k-nearest neighbor classifier, we first propose the DTW data augmentation that can generate DTW-targeted phase shift and amplitude change phenomena and retain time series structure and feature information. Inspired by the current state-of-the-art deep learning-based time series classification method, InceptionTime, which has good feature extraction capabilities, we designed a feature extractor capable of generating representations in an end-to-end manner. Finally, combining the advantages of DTW data augmentation and InceptionTime, our proposed TimeCLR method successfully extends SimCLR and applies it to the time series field. We designed a variety of experiments and performed careful ablation studies. Experimental results show that our proposed TimeCLR method can not only achieve comparable performance to supervised InceptionTime on multiple tasks, but also produce better performance than supervised learning models in the case of insufficient labeled data, and can be flexibly applied to univariate time series data from different domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安安完成签到 ,获得积分10
刚刚
花生爱发文完成签到,获得积分10
1秒前
搜集达人应助大晨采纳,获得10
1秒前
梦幻完成签到 ,获得积分10
1秒前
1秒前
半糖完成签到,获得积分10
1秒前
蔡小葵完成签到,获得积分10
2秒前
Drew发布了新的文献求助10
2秒前
ruxing发布了新的文献求助10
3秒前
在水一方应助Li采纳,获得10
4秒前
科研CY完成签到,获得积分10
4秒前
司徒迎曼发布了新的文献求助10
4秒前
无花果应助su采纳,获得10
4秒前
简隋英完成签到,获得积分20
4秒前
深情安青应助曾友采纳,获得10
4秒前
稳重的灵安完成签到,获得积分10
4秒前
5秒前
grzzz完成签到,获得积分10
5秒前
xyz发布了新的文献求助10
5秒前
公西元柏发布了新的文献求助10
5秒前
6秒前
6秒前
wary发布了新的文献求助10
6秒前
7秒前
简隋英发布了新的文献求助30
7秒前
niu完成签到,获得积分10
7秒前
Qing灿完成签到,获得积分10
7秒前
粒子一号完成签到,获得积分10
8秒前
FY完成签到,获得积分10
8秒前
Aurora完成签到,获得积分10
8秒前
9秒前
9秒前
柔弱凡松完成签到,获得积分10
10秒前
BB完成签到,获得积分10
10秒前
Lin发布了新的文献求助10
10秒前
10秒前
内向音响完成签到,获得积分20
11秒前
科研小白完成签到,获得积分10
11秒前
刘芸芸完成签到,获得积分10
11秒前
伍贰肆完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762