TimeCLR: A self-supervised contrastive learning framework for univariate time series representation

计算机科学 人工智能 单变量 分类器(UML) 时间序列 特征学习 模式识别(心理学) 机器学习 特征(语言学) 提取器 领域(数学) 特征提取 代表(政治) 深度学习 数据挖掘 多元统计 数学 政治 工程类 哲学 语言学 工艺工程 政治学 法学 纯数学
作者
Xinyu Yang,Zhenguo Zhang,Rongyi Cui
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:245: 108606-108606 被引量:58
标识
DOI:10.1016/j.knosys.2022.108606
摘要

Time series are usually rarely or sparsely labeled, which limits the performance of deep learning models. Self-supervised representation learning can reduce the reliance of deep learning models on labeled data by extracting structure and feature information from unlabeled data and improve model performance when labeled data is insufficient. Although SimCLR has achieved impressive success in the computer vision field, direct applying SimCLR to time series field usually performs poorly due to the part of data augmentation and the part of feature extractor not being adapted to the temporal dependencies within the time series data. In order to obtain high-quality time series representations, we propose TimeCLR, a framework which is suitable for univariate time series representation, by combining the advantages of DTW and InceptionTime. Inspired by the DTW-based k-nearest neighbor classifier, we first propose the DTW data augmentation that can generate DTW-targeted phase shift and amplitude change phenomena and retain time series structure and feature information. Inspired by the current state-of-the-art deep learning-based time series classification method, InceptionTime, which has good feature extraction capabilities, we designed a feature extractor capable of generating representations in an end-to-end manner. Finally, combining the advantages of DTW data augmentation and InceptionTime, our proposed TimeCLR method successfully extends SimCLR and applies it to the time series field. We designed a variety of experiments and performed careful ablation studies. Experimental results show that our proposed TimeCLR method can not only achieve comparable performance to supervised InceptionTime on multiple tasks, but also produce better performance than supervised learning models in the case of insufficient labeled data, and can be flexibly applied to univariate time series data from different domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
ringo发布了新的文献求助10
刚刚
韦老虎完成签到,获得积分20
1秒前
1秒前
雨霖铃完成签到 ,获得积分10
2秒前
白兔发布了新的文献求助10
2秒前
张匀继完成签到,获得积分10
3秒前
5秒前
诸葛朝雪发布了新的文献求助10
5秒前
阿巴阿巴完成签到,获得积分10
6秒前
雨霖铃关注了科研通微信公众号
7秒前
小叶子完成签到 ,获得积分10
8秒前
8秒前
CodeCraft应助冷酷莫茗采纳,获得10
9秒前
20240901发布了新的文献求助10
10秒前
10秒前
Lucas应助科研通管家采纳,获得10
11秒前
十八鱼应助科研通管家采纳,获得10
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
欧皇完成签到,获得积分20
12秒前
临床医学研究中心完成签到,获得积分10
13秒前
14秒前
科研通AI6应助故意的烧鹅采纳,获得10
15秒前
HH完成签到,获得积分10
16秒前
16秒前
16秒前
linthirteen完成签到,获得积分10
17秒前
花花发布了新的文献求助10
17秒前
mxq发布了新的文献求助10
17秒前
璐璐完成签到,获得积分10
18秒前
18秒前
深情安青应助wfs采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
guuu发布了新的文献求助10
19秒前
zyt关闭了zyt文献求助
20秒前
听雨落完成签到,获得积分10
21秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5236872
求助须知:如何正确求助?哪些是违规求助? 4405022
关于积分的说明 13709120
捐赠科研通 4272996
什么是DOI,文献DOI怎么找? 2344751
邀请新用户注册赠送积分活动 1341947
关于科研通互助平台的介绍 1299669