计算机科学
背景(考古学)
公制(单位)
数据科学
医疗保健
系统回顾
水准点(测量)
生物识别
对抗制
大数据
数据挖掘
合成数据
人工智能
梅德林
古生物学
运营管理
大地测量学
政治学
地理
法学
经济
生物
经济增长
作者
Mikel Hernandez,Gorka Epelde,Ane Alberdi,Rodrigo Cilla,Debbie Rankin
标识
DOI:10.1016/j.neucom.2022.04.053
摘要
Synthetic data generation (SDG) research has been ongoing for some time with promising results in different application domains, including healthcare, biometrics and energy consumption. The need for a robust SDG solution to capitalise on advances in Big Data and AI technology has never been greater to enable access to useful data while ensuring reasonable privacy protections. This paper presents a systematic review from the last 5 years (2016–2021) to analyse and report on recent approaches in synthetic tabular data generation (STDG) with a focus on the healthcare application context to preserve patient privacy, paying special attention to the contribution of Generative Adversarial Networks (GAN). In total 34 publications have been retrieved and analysed. A classification of approaches has been proposed and the performance of GAN-based approaches has been extensively analysed. From the systematic review it has been concluded that there is no universal method or metric to evaluate and benchmark the performance of various approaches and that further research is needed to improve the generalisability of GANs to find a model that works optimally across tabular healthcare data.
科研通智能强力驱动
Strongly Powered by AbleSci AI