真皮
角质层
材料科学
光学相干层析成像
生物医学工程
表皮(动物学)
刚度
弹性成像
弹性(物理)
瑞利散射
光学
复合材料
解剖
声学
超声波
物理
病理
医学
作者
Xu Feng,Guo-Yang Li,Antoine Ramier,Amira M. Eltony,Seok Hyun Yun
标识
DOI:10.1016/j.actbio.2022.04.030
摘要
Traveling-wave optical coherence elastography (OCE) is a promising technique to measure the stiffness of biological tissues. While OCE has been applied to relatively homogeneous samples, tissues with significantly varying elasticity through depth pose a challenge, requiring depth-resolved measurement with sufficient resolution and accuracy. Here, we develop a broadband Rayleigh-wave OCE technique capable of measuring the elastic moduli of the 3 major skin layers (epidermis, dermis, and hypodermis) reliably by analyzing the dispersion of leaky Rayleigh surface waves over a wide frequency range of 0.1–10 kHz. We show that a previously unexplored, high frequency range of 4–10 kHz is critical to resolve the thin epidermis, while a low frequency range of 0.2–1 kHz is adequate to probe the dermis and deeper hypodermis. We develop a dual bilayer-based inverse model to determine the elastic moduli in all 3 layers and verify its high accuracy with finite element analysis and skin-mimicking phantoms. Finally, the technique is applied to measure the forearm skin of healthy volunteers. The Young's modulus of the epidermis (including the stratum corneum) is measured to be ∼ 4 MPa at 4–10 kHz, whereas Young's moduli of the dermis and hypodermis are about 40 and 15 kPa, respectively, at 0.2–1 kHz. Besides dermatologic applications, this method may be useful for the mechanical analysis of various other layered tissues with sub-mm depth resolution. To our knowledge, this is the first study that resolves the stiffness of the thin epidermis from the dermis and hypodermis, made possible by using high-frequency (4 – 10 kHz) elastic waves and optical coherence elastography. Beyond the skin, this technique may be useful for mechanical characterizations of various layered biomaterials and tissues.
科研通智能强力驱动
Strongly Powered by AbleSci AI