扫描仪
成像体模
图像质量
螺旋(铁路)
准直光
迭代重建
像素
等中心
光学
半最大全宽
图像分辨率
噪音(视频)
图像噪声
物理
数学
计算机科学
人工智能
图像(数学)
数学分析
激光器
作者
T. Flohr,Karl Stierstorfer,Herbert Bruder,Johannes Simon,Arkadiusz Polacin,Stefan J. Schaller
摘要
We present a theoretical overview and a performance evaluation of a novel approximate reconstruction algorithm for cone-beam spiral CT, the adaptive multiple plane reconstruction (AMPR), which has been introduced by Schaller, Flohr et al. [Proc. SPIE Int. Symp. Med. Imag. 4322, 113–127 (2001)] AMPR has been implemented in a recently introduced 16-slice CT scanner. We present a detailed algorithmic description of AMPR which allows for a free selection of the spiral pitch. We show that dose utilization is better than 90% independent of the pitch. We give an overview on the z-reformation functions chosen to allow for a variable selection of the spiral slice width at arbitrary pitch values. To investigate AMPR image quality we present images of anthropomorphic phantoms and initial patient results. We present measurements of spiral slice sensitivity profiles (SSPs) and measurements of the maximum achievable transverse resolution, both in the isocenter and off-center. We discuss the pitch dependence of image noise measured in a centered 20 cm water phantom. Using the AMPR approach, cone-beam artifacts are considerably reduced for the 16-slice scanner investigated. Image quality in MPRs is independent of the pitch and equivalent to a single-slice CT system at pitch . The full width at half-maximum (FWHM) of the spiral SSPs shows only minor variations as a function of the pitch, nominal, and measured values differ by less than 0.2 mm. With 16×0.75 mm collimation, the measured FWHM of the smallest reconstructed slice is about 0.9 mm. Using this slice width and overlapping image reconstruction, cylindrical holes with 0.6 mm diameter can be resolved in a z-resolution phantom. Image noise for constant effective mAs is nearly independent of the pitch. Measured and theoretically expected dose utilization are in good agreement. Meanwhile, clinical practice has demonstrated the excellent image quality and the increased diagnostic capability that is obtained with the new generation of multislice CT systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI