Fulfillment scheduling for buy‐online‐pickup‐in‐store orders

卡车 订单履行 备品备件 订单(交换) 调度(生产过程) 计算机科学 全渠道 地铁列车时刻表 订单处理 业务 运营管理 供应链 营销 操作系统 工程类 万维网 航空航天工程 财务
作者
Xueqi Wu,Zhi‐Long Chen
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (7): 2982-3003 被引量:8
标识
DOI:10.1111/poms.13734
摘要

One of the most popular ways of shopping in an omnichannel retailing environment is buy‐online‐pickup‐in‐store (BOPS). Retailers often promise BOPS shoppers short in‐store pickup ready times. We study fulfillment scheduling decisions of BOPS orders destined for a single store of a retailer. There are two fulfillment options for BOPS orders: they can be either processed at a fulfillment center (FC) and delivered to the store or processed at the store without needing delivery. There are two types of trucks available to deliver the BOPS orders fulfilled at the FC: prescheduled trucks that are already committed to replenishing store inventory and have some spare capacity that can be utilized, and additional trucks that can be hired from third‐party logistics providers. There is a fixed cost for using each truck; the cost for using a prescheduled truck is lower than that for using an additional truck. If an order is fulfilled at the store, it incurs a processing cost and a processing time, whereas the processing cost and time are negligible if an order is fulfilled at the FC. The problem is to determine where to fulfill each order (FC vs. the store), how to assign the orders fulfilled at the FC to trucks for delivery, and how to schedule the orders fulfilled at the store for store processing, so as to minimize the total fulfillment cost, including the delivery cost from the FC to the store incurred by the orders processed at the FC, and the processing cost for fulfilling the rest of the orders at the store, subject to the constraint that each order is ready for pickup at the store by its promised pickup ready time. We consider various cases of the problem by clarifying their computational complexity, developing optimal algorithms and heuristics, and analyzing theoretical performance of the heuristics. We also conduct computational experiments to validate the effectiveness of the proposed heuristics in both static and dynamic settings and derive important insights about how the presence of prescheduled trucks and the presence of store fulfillment option impact the fulfillment cost and decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xuxu完成签到 ,获得积分10
1秒前
2秒前
毛毛虫发布了新的文献求助10
2秒前
科研通AI5应助朴斓采纳,获得10
3秒前
陈彦冰完成签到,获得积分10
3秒前
tianny完成签到,获得积分10
4秒前
浪迹天涯发布了新的文献求助10
5秒前
星星发布了新的文献求助10
5秒前
李瑞瑞完成签到,获得积分10
6秒前
6秒前
8秒前
星辰大海应助jy采纳,获得10
8秒前
9秒前
我是站长才怪应助Khr1stINK采纳,获得10
9秒前
10秒前
xh完成签到,获得积分10
11秒前
para_团结完成签到,获得积分10
12秒前
怡然剑成发布了新的文献求助10
12秒前
13秒前
13秒前
ipeakkka发布了新的文献求助10
13秒前
George完成签到,获得积分10
15秒前
WDK完成签到,获得积分10
15秒前
情怀应助敏感的芷采纳,获得10
15秒前
Orange应助方勇飞采纳,获得10
16秒前
FashionBoy应助烂漫驳采纳,获得10
16秒前
17秒前
18秒前
大鱼完成签到,获得积分10
18秒前
18秒前
lu完成签到,获得积分10
19秒前
Murphy完成签到 ,获得积分10
19秒前
斯文败类应助大方嵩采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得30
20秒前
hh应助科研通管家采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824