Fulfillment scheduling for buy‐online‐pickup‐in‐store orders

卡车 订单履行 备品备件 订单(交换) 调度(生产过程) 计算机科学 全渠道 地铁列车时刻表 订单处理 业务 运营管理 供应链 营销 操作系统 工程类 万维网 财务 航空航天工程
作者
Xueqi Wu,Zhi‐Long Chen
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (7): 2982-3003 被引量:15
标识
DOI:10.1111/poms.13734
摘要

One of the most popular ways of shopping in an omnichannel retailing environment is buy‐online‐pickup‐in‐store (BOPS). Retailers often promise BOPS shoppers short in‐store pickup ready times. We study fulfillment scheduling decisions of BOPS orders destined for a single store of a retailer. There are two fulfillment options for BOPS orders: they can be either processed at a fulfillment center (FC) and delivered to the store or processed at the store without needing delivery. There are two types of trucks available to deliver the BOPS orders fulfilled at the FC: prescheduled trucks that are already committed to replenishing store inventory and have some spare capacity that can be utilized, and additional trucks that can be hired from third‐party logistics providers. There is a fixed cost for using each truck; the cost for using a prescheduled truck is lower than that for using an additional truck. If an order is fulfilled at the store, it incurs a processing cost and a processing time, whereas the processing cost and time are negligible if an order is fulfilled at the FC. The problem is to determine where to fulfill each order (FC vs. the store), how to assign the orders fulfilled at the FC to trucks for delivery, and how to schedule the orders fulfilled at the store for store processing, so as to minimize the total fulfillment cost, including the delivery cost from the FC to the store incurred by the orders processed at the FC, and the processing cost for fulfilling the rest of the orders at the store, subject to the constraint that each order is ready for pickup at the store by its promised pickup ready time. We consider various cases of the problem by clarifying their computational complexity, developing optimal algorithms and heuristics, and analyzing theoretical performance of the heuristics. We also conduct computational experiments to validate the effectiveness of the proposed heuristics in both static and dynamic settings and derive important insights about how the presence of prescheduled trucks and the presence of store fulfillment option impact the fulfillment cost and decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫霄客完成签到,获得积分10
刚刚
1秒前
烟花应助蛙蛙采纳,获得10
1秒前
1秒前
han发布了新的文献求助10
1秒前
郭1994完成签到 ,获得积分10
2秒前
sxb10101应助于文志采纳,获得50
2秒前
2秒前
林深沉发布了新的文献求助10
2秒前
闪闪书桃完成签到,获得积分10
2秒前
3秒前
陈欣发布了新的文献求助10
3秒前
11231发布了新的文献求助10
4秒前
4秒前
Tong完成签到,获得积分10
4秒前
ronll发布了新的文献求助10
4秒前
悦耳白山发布了新的文献求助10
4秒前
dophin发布了新的文献求助10
5秒前
5秒前
xiaoguoxiaoguo完成签到,获得积分10
6秒前
warrior发布了新的文献求助10
6秒前
英姑应助包包琪采纳,获得10
6秒前
6秒前
SR完成签到,获得积分10
7秒前
8秒前
芝士发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
BowieHuang应助独特的高山采纳,获得10
10秒前
BowieHuang应助独特的高山采纳,获得10
10秒前
GZH完成签到,获得积分10
10秒前
yangxiaoya完成签到,获得积分10
11秒前
ronll完成签到,获得积分10
11秒前
马淑贤完成签到 ,获得积分10
12秒前
12秒前
汉堡包应助SLBY采纳,获得10
12秒前
zcm1999发布了新的文献求助10
12秒前
搜集达人应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719347
求助须知:如何正确求助?哪些是违规求助? 5256132
关于积分的说明 15288645
捐赠科研通 4869222
什么是DOI,文献DOI怎么找? 2614690
邀请新用户注册赠送积分活动 1564705
关于科研通互助平台的介绍 1521914