GraphTGI: an attention-based graph embedding model for predicting TF-target gene interactions

计算机科学 自编码 人工智能 Python(编程语言) 图形 交互信息 机器学习 基因调控网络 数据挖掘 深度学习 计算生物学 基因 理论计算机科学 生物 遗传学 数学 统计 操作系统 基因表达
作者
Zhihua Du,Yang-Han Wu,Yuan Huang,Jie Chen,Gui-Qing Pan,Lun Hu,Zhu‐Hong You,Jianqiang Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:7
标识
DOI:10.1093/bib/bbac148
摘要

Interaction between transcription factor (TF) and its target genes establishes the knowledge foundation for biological researches in transcriptional regulation, the number of which is, however, still limited by biological techniques. Existing computational methods relevant to the prediction of TF-target interactions are mostly proposed for predicting binding sites, rather than directly predicting the interactions. To this end, we propose here a graph attention-based autoencoder model to predict TF-target gene interactions using the information of the known TF-target gene interaction network combined with two sequential and chemical gene characters, considering that the unobserved interactions between transcription factors and target genes can be predicted by learning the pattern of the known ones. To the best of our knowledge, the proposed model is the first attempt to solve this problem by learning patterns from the known TF-target gene interaction network.In this paper, we formulate the prediction task of TF-target gene interactions as a link prediction problem on a complex knowledge graph and propose a deep learning model called GraphTGI, which is composed of a graph attention-based encoder and a bilinear decoder. We evaluated the prediction performance of the proposed method on a real dataset, and the experimental results show that the proposed model yields outstanding performance with an average AUC value of 0.8864 +/- 0.0057 in the 5-fold cross-validation. It is anticipated that the GraphTGI model can effectively and efficiently predict TF-target gene interactions on a large scale.Python code and the datasets used in our studies are made available at https://github.com/YanghanWu/GraphTGI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自建发布了新的文献求助10
1秒前
pluto应助舒适的梦玉采纳,获得20
2秒前
3秒前
3秒前
科研通AI5应助淡淡书文采纳,获得10
3秒前
听雨发布了新的文献求助10
4秒前
5秒前
7秒前
万能图书馆应助wangxinyao采纳,获得10
8秒前
meredith0571完成签到,获得积分10
8秒前
顺顺完成签到,获得积分10
8秒前
wawaeryu完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
14秒前
NexusExplorer应助acc采纳,获得10
15秒前
16秒前
科研通AI5应助Tao122采纳,获得10
16秒前
16秒前
17秒前
18秒前
淡淡书文发布了新的文献求助10
19秒前
20秒前
自觉盼雁完成签到,获得积分10
20秒前
20秒前
领导范儿应助喜悦的秋柔采纳,获得10
21秒前
llp发布了新的文献求助10
22秒前
23秒前
yanbosmu发布了新的文献求助10
23秒前
自信大雁完成签到,获得积分10
24秒前
小李发布了新的文献求助10
24秒前
24秒前
tkxfy完成签到,获得积分10
25秒前
乐乐应助111采纳,获得10
25秒前
taoliu发布了新的文献求助10
26秒前
Jolin发布了新的文献求助10
27秒前
acc发布了新的文献求助10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3766700
求助须知:如何正确求助?哪些是违规求助? 3311222
关于积分的说明 10157574
捐赠科研通 3026221
什么是DOI,文献DOI怎么找? 1661050
邀请新用户注册赠送积分活动 793826
科研通“疑难数据库(出版商)”最低求助积分说明 755838