Automatic recognition of whole-spine sagittal alignment and curvature analysis through a deep learning technique

矢状面 曲率 地标 组内相关 人工智能 医学 射线照相术 口腔正畸科 计算机科学 解剖 数学 放射科 几何学 临床心理学 心理测量学
作者
Chi-Hung Weng,Yu-Jui Huang,Chen-Ju Fu,Yu-Cheng Yeh,Chi-Ju Yeh,Tsung-Ting Tsai
出处
期刊:European Spine Journal [Springer Nature]
卷期号:31 (8): 2092-2103
标识
DOI:10.1007/s00586-022-07189-9
摘要

Artificial intelligence based on deep learning (DL) approaches enables the automatic recognition of anatomic landmarks and subsequent estimation of various spinopelvic parameters. The locations of inflection points (IPs) and apices (APs) in whole-spine lateral radiographs could be mathematically determined by a fully automatic spinal sagittal curvature analysis system.We developed a DL model for automatic spinal curvature analysis of whole-spine lateral plain radiographs by using 1800 annotated images of various spinal disease etiologies. The DL model comprised a landmark localizer to detect 25 vertebral landmarks and a numerical algorithm for the generation of an individualized spinal sagittal curvature. The characteristics of the spinal curvature, including the IPs, APs, and curvature angle, could thus be analyzed using mathematical definitions. The localization error of each landmark was calculated from the predictions of 300 test images to evaluate the performance of the landmark localizer. The interrater reliability among a senior orthopedic surgeon, a radiologist, and the DL model was assessed using the intraclass correlation coefficient (ICC).The accuracy of the landmark localizer was within an acceptable range (median error: 1.7-4.1 mm), and the interrater reliabilities between the proposed DL model and each expert were good to excellent (all ICCs > 0.85) for the measurement of spinal curvature characteristics.The interrater reliability between the proposed DL model and human experts was good to excellent in predicting the locations of IPs, APs, and curvature angles. Future applications should be explored to validate this system and improve its clinical efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
Jasper应助向南采纳,获得10
1秒前
无羡发布了新的文献求助10
1秒前
addr发布了新的文献求助10
1秒前
2秒前
橙子完成签到,获得积分10
2秒前
研狗发布了新的文献求助20
3秒前
DCQ发布了新的文献求助10
3秒前
科研通AI6应助正直的剑客采纳,获得10
3秒前
3秒前
3秒前
3秒前
wanci应助szxhandsome采纳,获得10
4秒前
机灵的冷风完成签到 ,获得积分10
4秒前
超级安荷完成签到 ,获得积分10
4秒前
4秒前
5秒前
小体发布了新的文献求助10
5秒前
希希完成签到 ,获得积分10
5秒前
Owen应助chinjaneking采纳,获得10
5秒前
爆米花应助美味肉蟹煲采纳,获得10
5秒前
踏实的兔子完成签到 ,获得积分10
5秒前
Catalina_S应助learn采纳,获得20
6秒前
cz完成签到,获得积分10
6秒前
lqz07完成签到,获得积分10
6秒前
小巧涔雨完成签到,获得积分10
7秒前
fff发布了新的文献求助10
7秒前
mc完成签到,获得积分10
7秒前
七月发布了新的文献求助10
7秒前
懿懿发布了新的文献求助10
8秒前
Atalent发布了新的文献求助10
8秒前
8秒前
白芷完成签到,获得积分10
8秒前
高大山彤完成签到,获得积分10
9秒前
合适醉蝶完成签到 ,获得积分10
9秒前
9秒前
王云霞完成签到,获得积分10
10秒前
xycc完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887