Automatic recognition of whole-spine sagittal alignment and curvature analysis through a deep learning technique

矢状面 曲率 地标 组内相关 人工智能 医学 射线照相术 口腔正畸科 计算机科学 解剖 数学 放射科 几何学 临床心理学 心理测量学
作者
Chi-Hung Weng,Yu-Jui Huang,Chen-Ju Fu,Yu-Cheng Yeh,Chi-Ju Yeh,Tsung-Ting Tsai
出处
期刊:European Spine Journal [Springer Science+Business Media]
卷期号:31 (8): 2092-2103
标识
DOI:10.1007/s00586-022-07189-9
摘要

Artificial intelligence based on deep learning (DL) approaches enables the automatic recognition of anatomic landmarks and subsequent estimation of various spinopelvic parameters. The locations of inflection points (IPs) and apices (APs) in whole-spine lateral radiographs could be mathematically determined by a fully automatic spinal sagittal curvature analysis system.We developed a DL model for automatic spinal curvature analysis of whole-spine lateral plain radiographs by using 1800 annotated images of various spinal disease etiologies. The DL model comprised a landmark localizer to detect 25 vertebral landmarks and a numerical algorithm for the generation of an individualized spinal sagittal curvature. The characteristics of the spinal curvature, including the IPs, APs, and curvature angle, could thus be analyzed using mathematical definitions. The localization error of each landmark was calculated from the predictions of 300 test images to evaluate the performance of the landmark localizer. The interrater reliability among a senior orthopedic surgeon, a radiologist, and the DL model was assessed using the intraclass correlation coefficient (ICC).The accuracy of the landmark localizer was within an acceptable range (median error: 1.7-4.1 mm), and the interrater reliabilities between the proposed DL model and each expert were good to excellent (all ICCs > 0.85) for the measurement of spinal curvature characteristics.The interrater reliability between the proposed DL model and human experts was good to excellent in predicting the locations of IPs, APs, and curvature angles. Future applications should be explored to validate this system and improve its clinical efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jj完成签到,获得积分10
2秒前
慕青应助李李李采纳,获得10
3秒前
tsuki完成签到 ,获得积分10
3秒前
3秒前
5秒前
星辰大海应助Courageous采纳,获得10
6秒前
哒哒发布了新的文献求助10
6秒前
Jasper应助meimei采纳,获得10
7秒前
俏皮若之发布了新的文献求助10
11秒前
绿竹完成签到,获得积分10
11秒前
朴素乐菱完成签到,获得积分10
11秒前
情怀应助香蕉元风采纳,获得10
12秒前
坦率的枕头完成签到,获得积分10
12秒前
13秒前
哒哒完成签到,获得积分10
13秒前
13秒前
射天狼发布了新的文献求助10
14秒前
meimei完成签到,获得积分20
16秒前
18秒前
18秒前
18秒前
dong应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI5应助科研通管家采纳,获得30
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
科研通AI2S应助sihui采纳,获得10
21秒前
大模型应助科研通管家采纳,获得10
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
21秒前
Ricey应助科研通管家采纳,获得10
21秒前
王子安应助科研通管家采纳,获得10
21秒前
顾矜应助科研通管家采纳,获得50
21秒前
上官若男应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993820
求助须知:如何正确求助?哪些是违规求助? 3534462
关于积分的说明 11265617
捐赠科研通 3274313
什么是DOI,文献DOI怎么找? 1806345
邀请新用户注册赠送积分活动 883137
科研通“疑难数据库(出版商)”最低求助积分说明 809712