Classification of biological signals and time domain feature extraction using capsule optimized auto encoder‐electroencephalographic and electromyography

模式识别(心理学) 人工智能 计算机科学 特征提取 信号处理 脑电图 语音识别 小波 时域 预处理器 肌电图 计算机视觉 数字信号处理 计算机硬件 心理学 精神科
作者
Neeraj Sharma,Hardeep Singh Ryait,Sudhir Sharma
出处
期刊:International Journal of Adaptive Control and Signal Processing [Wiley]
卷期号:36 (7): 1670-1690 被引量:3
标识
DOI:10.1002/acs.3414
摘要

Abstract Electroencephalographic (EEG) and electromyography (EMG) signal classification seem to be a modulus topic in engineering and the medical field. The nature of the EEG and EMG signal is non‐stationary, noisy and high dimensional. The intrusion of noise in the signal may distress movement recognition. A novel methodology is being developed in this research to deal with these issues. Here, the EEG and EMG signals are recorded using the BCI2000 system. The proposed model comprises three phases: pre‐processing, feature extraction (FE), and motion classification. The pre‐processing method can be used to enhance visual appearances and the quality of the signal. The hybrid discrete wavelet based delayed error normalized least mean square error (DWT‐DENLMS) is introduced to eliminate the presence of motion artifacts in the recorded EEG and EMG signal. After pre‐processing, the recorded signals are combined and forwarded to the FE stage. The hybrid Dual tree complex wavelet transforms based on Walsh Hadamard transform (DTCWT‐WHT) is proposed to extract the indispensable time domain features from the combined biological signal. The hybrid capsule transient autoencoder (HCTAE) algorithm is proposed to classify the motion recognition (T0‐rest, T1‐left fist and both fists, and T2‐right fist, both feet). The error in the network model is diminished by transient search optimization (TSO) strategy. The Python platform is used to implement the developed approach, and the performance of the optimized classification approach yields accuracy, precision, recall, F 1 score and specificity of 98.51%, 97.25%, 97.94%, 97.58% and 98.94%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助mmmmm采纳,获得10
刚刚
蒋时晏应助动词大茗音采纳,获得30
刚刚
Nn发布了新的文献求助10
刚刚
刚刚
Seven发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
wjm完成签到,获得积分10
1秒前
2秒前
sophia发布了新的文献求助10
2秒前
起名字好难呀完成签到 ,获得积分10
3秒前
3秒前
vvvvyl发布了新的文献求助10
3秒前
4秒前
JACk发布了新的文献求助10
4秒前
5秒前
Lucas应助结实的含烟采纳,获得10
5秒前
科研通AI5应助meikoo采纳,获得10
6秒前
6秒前
6秒前
6秒前
懵懂的易蓉完成签到,获得积分10
7秒前
秋澄发布了新的文献求助10
7秒前
顺心傲易完成签到,获得积分20
7秒前
李雩完成签到,获得积分10
8秒前
大个应助QI采纳,获得10
8秒前
8秒前
淡然学发布了新的文献求助10
9秒前
那些年发布了新的文献求助10
9秒前
科研通AI5应助左白易采纳,获得10
9秒前
10秒前
所所应助nbzhan采纳,获得10
10秒前
10秒前
10秒前
小菜发布了新的文献求助10
11秒前
12秒前
daisy完成签到,获得积分10
12秒前
Orange应助让大佐眯会吧采纳,获得10
12秒前
曹great完成签到,获得积分10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483178
求助须知:如何正确求助?哪些是违规求助? 3072587
关于积分的说明 9127119
捐赠科研通 2764162
什么是DOI,文献DOI怎么找? 1516962
邀请新用户注册赠送积分活动 701873
科研通“疑难数据库(出版商)”最低求助积分说明 700737