Classification of biological signals and time domain feature extraction using capsule optimized auto encoder‐electroencephalographic and electromyography

模式识别(心理学) 人工智能 计算机科学 特征提取 信号处理 脑电图 语音识别 小波 时域 预处理器 肌电图 计算机视觉 数字信号处理 心理学 精神科 计算机硬件
作者
Neeraj Sharma,Hardeep Singh Ryait,Sudhir Sharma
出处
期刊:International Journal of Adaptive Control and Signal Processing [Wiley]
卷期号:36 (7): 1670-1690 被引量:3
标识
DOI:10.1002/acs.3414
摘要

Abstract Electroencephalographic (EEG) and electromyography (EMG) signal classification seem to be a modulus topic in engineering and the medical field. The nature of the EEG and EMG signal is non‐stationary, noisy and high dimensional. The intrusion of noise in the signal may distress movement recognition. A novel methodology is being developed in this research to deal with these issues. Here, the EEG and EMG signals are recorded using the BCI2000 system. The proposed model comprises three phases: pre‐processing, feature extraction (FE), and motion classification. The pre‐processing method can be used to enhance visual appearances and the quality of the signal. The hybrid discrete wavelet based delayed error normalized least mean square error (DWT‐DENLMS) is introduced to eliminate the presence of motion artifacts in the recorded EEG and EMG signal. After pre‐processing, the recorded signals are combined and forwarded to the FE stage. The hybrid Dual tree complex wavelet transforms based on Walsh Hadamard transform (DTCWT‐WHT) is proposed to extract the indispensable time domain features from the combined biological signal. The hybrid capsule transient autoencoder (HCTAE) algorithm is proposed to classify the motion recognition (T0‐rest, T1‐left fist and both fists, and T2‐right fist, both feet). The error in the network model is diminished by transient search optimization (TSO) strategy. The Python platform is used to implement the developed approach, and the performance of the optimized classification approach yields accuracy, precision, recall, F 1 score and specificity of 98.51%, 97.25%, 97.94%, 97.58% and 98.94%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青云发布了新的文献求助10
刚刚
月圆夜发布了新的文献求助10
刚刚
JunHan发布了新的文献求助10
2秒前
榴莲姑娘发布了新的文献求助10
3秒前
smh完成签到,获得积分10
4秒前
爬起来学习应助yyyy采纳,获得10
4秒前
Jack完成签到,获得积分10
5秒前
COSMOS_137完成签到 ,获得积分10
7秒前
7秒前
谨慎建辉完成签到,获得积分10
7秒前
薛潇完成签到,获得积分10
9秒前
留白完成签到 ,获得积分10
9秒前
10秒前
ry完成签到,获得积分10
11秒前
bindandande发布了新的文献求助10
12秒前
12秒前
13秒前
wly发布了新的文献求助10
13秒前
耶耶关注了科研通微信公众号
14秒前
汉堡包应助李雯雯采纳,获得10
14秒前
立冬完成签到,获得积分10
14秒前
14秒前
长情白桃完成签到,获得积分10
16秒前
活力老少女完成签到 ,获得积分10
16秒前
ANTI完成签到,获得积分10
17秒前
烟花应助杨小鸿采纳,获得10
17秒前
mo发布了新的文献求助30
18秒前
万有引力139完成签到,获得积分10
18秒前
煎饼果子不加葱完成签到,获得积分10
19秒前
wly完成签到,获得积分10
19秒前
20秒前
SBoot完成签到,获得积分10
23秒前
23秒前
善学以致用应助ANTI采纳,获得10
23秒前
23秒前
小猪坨完成签到,获得积分10
24秒前
24秒前
坦率问枫完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
茹茹完成签到 ,获得积分10
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742602
求助须知:如何正确求助?哪些是违规求助? 5409228
关于积分的说明 15345305
捐赠科研通 4883751
什么是DOI,文献DOI怎么找? 2625329
邀请新用户注册赠送积分活动 1574165
关于科研通互助平台的介绍 1531093