Electronic noses based on metal oxide semiconductor sensors for detecting crop diseases and insect pests

电子鼻 作物保护 生物技术 农业 作物 农业工程 生化工程 环境科学 毒理 计算机科学 生物 农林复合经营 生态学 工程类 人工智能
作者
Zichen Zheng,Chao Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:197: 106988-106988 被引量:46
标识
DOI:10.1016/j.compag.2022.106988
摘要

The detection of pests and diseases is very important for agricultural production. Every year, the economic loss caused by pest infestation is enormous. The traditional methods of applying pesticides and fertilizers have negatively affected the ecological environment and human health. There is an urgent need to develop more environmentally friendly pest detection technologies. Although PCR (Polymerase Chain Reaction)-based pest control technology has high accuracy, it requires sample pretreatment and requires training of operators. In the past few years, the electronic nose (E-nose) technology that imitates the animal olfactory system has developed rapidly, and has early warning functions for pests and diseases. This technology has non-damage detection, low cost, high sensitivity, real-time analysis, simple operation, and convenient portability, etc. During the occurrence of pests, crops will release Volatile Organic Compounds (VOCs) to drive away pests, or release VOCs to attract pests' natural enemies to protect themselves. At this time, E-nose has ability to detect the type and concentration of VOCs to reflect the status of crop diseases and insect pests. Metal Oxide Semiconductor (MOS) gas sensors have the advantages of cross-sensitivity, large response range and low manufacturing price, and their arrays have been used in E-nose applications extensively. This article reviews the principle, technology and application progress of MOS electronic nose technology in detecting crop diseases and insect pests, and hopes to provide valuable information for the research on crop diseases and insect pests protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
舒适怀寒完成签到 ,获得积分10
3秒前
miao应助孙淼采纳,获得20
4秒前
小马甲应助孙淼采纳,获得10
4秒前
9秒前
Jiatu_Li发布了新的文献求助10
9秒前
英吉利25发布了新的文献求助10
13秒前
15秒前
16秒前
CodeCraft应助zzydada采纳,获得20
17秒前
yangL完成签到,获得积分10
17秒前
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
19秒前
Hello应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得50
19秒前
哈哈哈哈发布了新的文献求助10
20秒前
二十又澪完成签到,获得积分10
20秒前
21秒前
yangL发布了新的文献求助10
21秒前
千跃完成签到,获得积分10
23秒前
阿甲发布了新的文献求助10
23秒前
24秒前
隐形曼青应助Jiatu_Li采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425