FG-GAN: A Fine-Grained Generative Adversarial Network for Unsupervised SAR-to-Optical Image Translation

计算机科学 鉴别器 人工智能 合成孔径雷达 图像翻译 散斑噪声 规范化(社会学) 模式识别(心理学) 计算机视觉 翻译(生物学) 发电机(电路理论) 图像(数学) 物理 社会学 信使核糖核酸 基因 探测器 功率(物理) 电信 化学 量子力学 生物化学 人类学
作者
Xi Yang,Zihan Wang,Jingyi Zhao,Dong Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:20
标识
DOI:10.1109/tgrs.2022.3165371
摘要

Synthetic aperture radar (SAR) and optical sensing are two important means of Earth observation. SAR can be used for all-day and all-weather Earth observation, but it has the disadvantages of speckle noise and geometric distortion, which are not conducive to human eye recognition. Optical image conforms to the characteristics of human visual observation, but it is easily affected by climate and time. Therefore, to integrate the advantages of the two, researchers have carried out extensive work on SAR-to-optical (S2O) image translation. Most of the existing methods for S2O image translation are supervised and need paired training samples, limiting its large-scale application in remote sensing field. Thus, we give priority to an unsupervised S2O image translation method. Meanwhile, we find that the images generated by unsupervised methods suffer from significant detail deficiencies. To solve this problem, we propose a fine-grained generative adversarial network (FG-GAN) introducing three strategies to enhance the detailed information in generated optical images. First, we design an unbalanced generator (UBG) with complex encoder networks and relatively simple decoder networks. The complex encoder extracts abundant feature information, while the decoder obtains key details by filtering these features. Second, to match the learning ability of the generator, we present a multiscale discriminator (MSD) to enhance the discriminant ability of the network. Third, we propose a comprehensive normalization group (CNG) to promote the physical representation consistency of SAR and optical images. Extensive experiments have been conducted, and the results show that our method is superior to the state-of-the-art (SOTA) methods on both subjective and objective evaluation indicators. Moreover, our FG-GAN has a significant improvement on classification accuracy, indicating its potential in facilitating the performance of practical remote sensing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪灵枫发布了新的文献求助10
1秒前
科研通AI6.1应助cwj采纳,获得10
1秒前
xiahua发布了新的文献求助10
1秒前
1秒前
科研通AI6.1应助王明伟采纳,获得10
1秒前
3秒前
赘婿应助leslierui采纳,获得10
3秒前
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
NexusExplorer应助一顿吃不饱采纳,获得10
6秒前
7秒前
8秒前
8秒前
ttpd完成签到,获得积分10
8秒前
迷你的雁枫完成签到,获得积分10
9秒前
9秒前
HH发布了新的文献求助10
10秒前
wsh发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
rosestar发布了新的文献求助10
11秒前
AN发布了新的文献求助10
12秒前
12秒前
13秒前
小小元风完成签到,获得积分10
13秒前
ilihe应助陆康采纳,获得10
14秒前
英姑应助HDM的禾采纳,获得10
14秒前
爆米花应助高天雨采纳,获得20
15秒前
迷人的叫兽完成签到,获得积分10
16秒前
16秒前
爆米花应助陈文力采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
慧慧完成签到 ,获得积分10
17秒前
17秒前
xiahua发布了新的文献求助10
18秒前
一顿吃不饱完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769838
求助须知:如何正确求助?哪些是违规求助? 5581810
关于积分的说明 15422799
捐赠科研通 4903452
什么是DOI,文献DOI怎么找? 2638206
邀请新用户注册赠送积分活动 1586102
关于科研通互助平台的介绍 1541215