FG-GAN: A Fine-Grained Generative Adversarial Network for Unsupervised SAR-to-Optical Image Translation

计算机科学 鉴别器 人工智能 合成孔径雷达 图像翻译 散斑噪声 规范化(社会学) 模式识别(心理学) 计算机视觉 翻译(生物学) 发电机(电路理论) 图像(数学) 物理 社会学 信使核糖核酸 基因 探测器 功率(物理) 电信 化学 量子力学 生物化学 人类学
作者
Xi Yang,Zihan Wang,Jingyi Zhao,Dong Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:20
标识
DOI:10.1109/tgrs.2022.3165371
摘要

Synthetic aperture radar (SAR) and optical sensing are two important means of Earth observation. SAR can be used for all-day and all-weather Earth observation, but it has the disadvantages of speckle noise and geometric distortion, which are not conducive to human eye recognition. Optical image conforms to the characteristics of human visual observation, but it is easily affected by climate and time. Therefore, to integrate the advantages of the two, researchers have carried out extensive work on SAR-to-optical (S2O) image translation. Most of the existing methods for S2O image translation are supervised and need paired training samples, limiting its large-scale application in remote sensing field. Thus, we give priority to an unsupervised S2O image translation method. Meanwhile, we find that the images generated by unsupervised methods suffer from significant detail deficiencies. To solve this problem, we propose a fine-grained generative adversarial network (FG-GAN) introducing three strategies to enhance the detailed information in generated optical images. First, we design an unbalanced generator (UBG) with complex encoder networks and relatively simple decoder networks. The complex encoder extracts abundant feature information, while the decoder obtains key details by filtering these features. Second, to match the learning ability of the generator, we present a multiscale discriminator (MSD) to enhance the discriminant ability of the network. Third, we propose a comprehensive normalization group (CNG) to promote the physical representation consistency of SAR and optical images. Extensive experiments have been conducted, and the results show that our method is superior to the state-of-the-art (SOTA) methods on both subjective and objective evaluation indicators. Moreover, our FG-GAN has a significant improvement on classification accuracy, indicating its potential in facilitating the performance of practical remote sensing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助yuanyuan采纳,获得10
刚刚
1秒前
大胆的弼发布了新的文献求助10
1秒前
Charlie完成签到,获得积分10
1秒前
陈先生发布了新的文献求助10
1秒前
rurui完成签到,获得积分10
2秒前
英姑应助幸福的鞋垫采纳,获得10
3秒前
完美世界应助加百莉采纳,获得10
3秒前
万事都灵完成签到,获得积分10
4秒前
达叔完成签到,获得积分10
4秒前
不会游泳发布了新的文献求助10
4秒前
所所应助文艺不凡采纳,获得10
4秒前
5秒前
大个应助顶刊收割机采纳,获得10
6秒前
慕雨倾欣发布了新的文献求助10
6秒前
任性芷容完成签到,获得积分10
6秒前
Owen应助大圣采纳,获得10
6秒前
8秒前
wu关注了科研通微信公众号
8秒前
8秒前
bkagyin应助pirongshi采纳,获得10
9秒前
10秒前
可可给可可的求助进行了留言
10秒前
10秒前
o10完成签到,获得积分10
10秒前
不会游泳完成签到,获得积分10
11秒前
12秒前
达叔发布了新的文献求助10
12秒前
14秒前
加百莉发布了新的文献求助10
14秒前
生动梦松应助张旭采纳,获得30
14秒前
hans完成签到,获得积分10
14秒前
14秒前
文艺不凡发布了新的文献求助10
15秒前
15秒前
lyl完成签到,获得积分10
16秒前
JIANYOUFU发布了新的文献求助10
16秒前
执着的过客完成签到,获得积分10
16秒前
17秒前
我是老大应助桃源theshy采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and Properties of (±)- and (+)-4-MeS-3-C2H5-1,2,3-C2CoB9H10 1000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547211
求助须知:如何正确求助?哪些是违规求助? 3978236
关于积分的说明 12318371
捐赠科研通 3646777
什么是DOI,文献DOI怎么找? 2008339
邀请新用户注册赠送积分活动 1043928
科研通“疑难数据库(出版商)”最低求助积分说明 932532