亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FG-GAN: A Fine-Grained Generative Adversarial Network for Unsupervised SAR-to-Optical Image Translation

计算机科学 鉴别器 人工智能 合成孔径雷达 图像翻译 散斑噪声 规范化(社会学) 模式识别(心理学) 计算机视觉 翻译(生物学) 发电机(电路理论) 图像(数学) 物理 社会学 信使核糖核酸 基因 探测器 功率(物理) 电信 化学 量子力学 生物化学 人类学
作者
Xi Yang,Zihan Wang,Jingyi Zhao,Dong Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:20
标识
DOI:10.1109/tgrs.2022.3165371
摘要

Synthetic aperture radar (SAR) and optical sensing are two important means of Earth observation. SAR can be used for all-day and all-weather Earth observation, but it has the disadvantages of speckle noise and geometric distortion, which are not conducive to human eye recognition. Optical image conforms to the characteristics of human visual observation, but it is easily affected by climate and time. Therefore, to integrate the advantages of the two, researchers have carried out extensive work on SAR-to-optical (S2O) image translation. Most of the existing methods for S2O image translation are supervised and need paired training samples, limiting its large-scale application in remote sensing field. Thus, we give priority to an unsupervised S2O image translation method. Meanwhile, we find that the images generated by unsupervised methods suffer from significant detail deficiencies. To solve this problem, we propose a fine-grained generative adversarial network (FG-GAN) introducing three strategies to enhance the detailed information in generated optical images. First, we design an unbalanced generator (UBG) with complex encoder networks and relatively simple decoder networks. The complex encoder extracts abundant feature information, while the decoder obtains key details by filtering these features. Second, to match the learning ability of the generator, we present a multiscale discriminator (MSD) to enhance the discriminant ability of the network. Third, we propose a comprehensive normalization group (CNG) to promote the physical representation consistency of SAR and optical images. Extensive experiments have been conducted, and the results show that our method is superior to the state-of-the-art (SOTA) methods on both subjective and objective evaluation indicators. Moreover, our FG-GAN has a significant improvement on classification accuracy, indicating its potential in facilitating the performance of practical remote sensing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
科研小新发布了新的文献求助10
4秒前
小圆发布了新的文献求助10
9秒前
10秒前
李爱国应助科研小新采纳,获得10
11秒前
Amber发布了新的文献求助10
17秒前
20秒前
26秒前
月月发布了新的文献求助10
26秒前
Anlocia完成签到 ,获得积分10
26秒前
XX发布了新的文献求助10
29秒前
ktw完成签到,获得积分10
30秒前
Youy完成签到 ,获得积分10
32秒前
小池完成签到,获得积分10
32秒前
世良发布了新的文献求助10
37秒前
月月完成签到,获得积分10
40秒前
Lucas应助科研通管家采纳,获得10
41秒前
Criminology34应助科研通管家采纳,获得10
41秒前
Akim应助科研通管家采纳,获得10
41秒前
Criminology34应助科研通管家采纳,获得10
41秒前
SciGPT应助科研通管家采纳,获得10
41秒前
ceeray23应助科研通管家采纳,获得10
41秒前
西吴完成签到 ,获得积分10
41秒前
ceeray23应助科研通管家采纳,获得10
41秒前
42秒前
bkagyin应助chen采纳,获得10
43秒前
48秒前
小池发布了新的文献求助10
55秒前
56秒前
57秒前
chen发布了新的文献求助10
59秒前
lu2025完成签到,获得积分10
1分钟前
1分钟前
茄子发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
独特的师完成签到,获得积分10
1分钟前
完美世界应助世良采纳,获得10
1分钟前
vince完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650695
求助须知:如何正确求助?哪些是违规求助? 4781473
关于积分的说明 15052510
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572352
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487362