FG-GAN: A Fine-Grained Generative Adversarial Network for Unsupervised SAR-to-Optical Image Translation

计算机科学 鉴别器 人工智能 合成孔径雷达 图像翻译 散斑噪声 规范化(社会学) 模式识别(心理学) 计算机视觉 翻译(生物学) 发电机(电路理论) 图像(数学) 物理 社会学 信使核糖核酸 基因 探测器 功率(物理) 电信 化学 量子力学 生物化学 人类学
作者
Xi Yang,Zihan Wang,Jingyi Zhao,Dong Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:20
标识
DOI:10.1109/tgrs.2022.3165371
摘要

Synthetic aperture radar (SAR) and optical sensing are two important means of Earth observation. SAR can be used for all-day and all-weather Earth observation, but it has the disadvantages of speckle noise and geometric distortion, which are not conducive to human eye recognition. Optical image conforms to the characteristics of human visual observation, but it is easily affected by climate and time. Therefore, to integrate the advantages of the two, researchers have carried out extensive work on SAR-to-optical (S2O) image translation. Most of the existing methods for S2O image translation are supervised and need paired training samples, limiting its large-scale application in remote sensing field. Thus, we give priority to an unsupervised S2O image translation method. Meanwhile, we find that the images generated by unsupervised methods suffer from significant detail deficiencies. To solve this problem, we propose a fine-grained generative adversarial network (FG-GAN) introducing three strategies to enhance the detailed information in generated optical images. First, we design an unbalanced generator (UBG) with complex encoder networks and relatively simple decoder networks. The complex encoder extracts abundant feature information, while the decoder obtains key details by filtering these features. Second, to match the learning ability of the generator, we present a multiscale discriminator (MSD) to enhance the discriminant ability of the network. Third, we propose a comprehensive normalization group (CNG) to promote the physical representation consistency of SAR and optical images. Extensive experiments have been conducted, and the results show that our method is superior to the state-of-the-art (SOTA) methods on both subjective and objective evaluation indicators. Moreover, our FG-GAN has a significant improvement on classification accuracy, indicating its potential in facilitating the performance of practical remote sensing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenzy完成签到,获得积分10
刚刚
123完成签到,获得积分10
1秒前
2秒前
4秒前
5秒前
小葡萄发布了新的文献求助10
5秒前
Chloe完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
WXG发布了新的文献求助10
6秒前
cenghao应助调皮蛋采纳,获得10
7秒前
哈哈哈哈发布了新的文献求助10
7秒前
7秒前
zyt096发布了新的文献求助10
8秒前
大力盼易完成签到,获得积分10
9秒前
温暖芒果发布了新的文献求助10
9秒前
123发布了新的文献求助10
10秒前
ding应助七面东风采纳,获得10
10秒前
田様应助yyyf采纳,获得10
10秒前
carl发布了新的文献求助10
11秒前
cancan发布了新的文献求助10
12秒前
华生发布了新的文献求助10
12秒前
混子发布了新的文献求助10
13秒前
zliaoyuan完成签到,获得积分10
13秒前
14秒前
小蘑菇应助小白菜采纳,获得10
14秒前
16秒前
大力盼易关注了科研通微信公众号
18秒前
我是老大应助的的的维尔采纳,获得10
18秒前
19秒前
英姑应助111采纳,获得10
19秒前
19秒前
19秒前
19秒前
yyyf发布了新的文献求助10
20秒前
带线一去不回完成签到,获得积分10
20秒前
xielixin2001完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572125
求助须知:如何正确求助?哪些是违规求助? 4657321
关于积分的说明 14720115
捐赠科研通 4598123
什么是DOI,文献DOI怎么找? 2523566
邀请新用户注册赠送积分活动 1494346
关于科研通互助平台的介绍 1464416