亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FG-GAN: A Fine-Grained Generative Adversarial Network for Unsupervised SAR-to-Optical Image Translation

计算机科学 鉴别器 人工智能 合成孔径雷达 图像翻译 散斑噪声 规范化(社会学) 模式识别(心理学) 计算机视觉 翻译(生物学) 发电机(电路理论) 图像(数学) 物理 社会学 信使核糖核酸 基因 探测器 功率(物理) 电信 化学 量子力学 生物化学 人类学
作者
Xi Yang,Zihan Wang,Jingyi Zhao,Dong Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:20
标识
DOI:10.1109/tgrs.2022.3165371
摘要

Synthetic aperture radar (SAR) and optical sensing are two important means of Earth observation. SAR can be used for all-day and all-weather Earth observation, but it has the disadvantages of speckle noise and geometric distortion, which are not conducive to human eye recognition. Optical image conforms to the characteristics of human visual observation, but it is easily affected by climate and time. Therefore, to integrate the advantages of the two, researchers have carried out extensive work on SAR-to-optical (S2O) image translation. Most of the existing methods for S2O image translation are supervised and need paired training samples, limiting its large-scale application in remote sensing field. Thus, we give priority to an unsupervised S2O image translation method. Meanwhile, we find that the images generated by unsupervised methods suffer from significant detail deficiencies. To solve this problem, we propose a fine-grained generative adversarial network (FG-GAN) introducing three strategies to enhance the detailed information in generated optical images. First, we design an unbalanced generator (UBG) with complex encoder networks and relatively simple decoder networks. The complex encoder extracts abundant feature information, while the decoder obtains key details by filtering these features. Second, to match the learning ability of the generator, we present a multiscale discriminator (MSD) to enhance the discriminant ability of the network. Third, we propose a comprehensive normalization group (CNG) to promote the physical representation consistency of SAR and optical images. Extensive experiments have been conducted, and the results show that our method is superior to the state-of-the-art (SOTA) methods on both subjective and objective evaluation indicators. Moreover, our FG-GAN has a significant improvement on classification accuracy, indicating its potential in facilitating the performance of practical remote sensing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烤鱼不裹面包完成签到 ,获得积分10
2秒前
科研通AI2S应助吴茂林采纳,获得10
13秒前
辛勤山柳完成签到 ,获得积分20
18秒前
叙温雨发布了新的文献求助10
33秒前
garbage完成签到,获得积分10
39秒前
飘逸的飞丹完成签到 ,获得积分10
45秒前
46秒前
terry发布了新的文献求助10
52秒前
浮游应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得200
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得200
1分钟前
怡然枫叶完成签到,获得积分10
1分钟前
ysc121完成签到 ,获得积分10
1分钟前
1分钟前
慕青应助terry采纳,获得20
1分钟前
芝士发布了新的文献求助10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Chen完成签到 ,获得积分10
1分钟前
Criminology34应助olekravchenko采纳,获得10
1分钟前
1分钟前
张晓祁完成签到,获得积分10
1分钟前
yueying完成签到,获得积分10
2分钟前
Criminology34应助olekravchenko采纳,获得10
2分钟前
打打应助叙温雨采纳,获得10
2分钟前
彩色的尔珍完成签到,获得积分10
2分钟前
万能图书馆应助庖丁解柚采纳,获得10
2分钟前
天天快乐应助123456采纳,获得10
2分钟前
2分钟前
2分钟前
123456发布了新的文献求助10
2分钟前
叙温雨发布了新的文献求助10
2分钟前
甜美帅哥发布了新的文献求助10
3分钟前
脑洞疼应助123456采纳,获得10
3分钟前
3分钟前
张宇完成签到,获得积分10
3分钟前
123456发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291497
求助须知:如何正确求助?哪些是违规求助? 4442516
关于积分的说明 13830013
捐赠科研通 4325551
什么是DOI,文献DOI怎么找? 2374353
邀请新用户注册赠送积分活动 1369670
关于科研通互助平台的介绍 1333839