FG-GAN: A Fine-Grained Generative Adversarial Network for Unsupervised SAR-to-Optical Image Translation

计算机科学 鉴别器 人工智能 合成孔径雷达 图像翻译 散斑噪声 规范化(社会学) 模式识别(心理学) 计算机视觉 翻译(生物学) 发电机(电路理论) 图像(数学) 物理 社会学 信使核糖核酸 基因 探测器 功率(物理) 电信 化学 量子力学 生物化学 人类学
作者
Xi Yang,Zihan Wang,Jingyi Zhao,Dong Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:20
标识
DOI:10.1109/tgrs.2022.3165371
摘要

Synthetic aperture radar (SAR) and optical sensing are two important means of Earth observation. SAR can be used for all-day and all-weather Earth observation, but it has the disadvantages of speckle noise and geometric distortion, which are not conducive to human eye recognition. Optical image conforms to the characteristics of human visual observation, but it is easily affected by climate and time. Therefore, to integrate the advantages of the two, researchers have carried out extensive work on SAR-to-optical (S2O) image translation. Most of the existing methods for S2O image translation are supervised and need paired training samples, limiting its large-scale application in remote sensing field. Thus, we give priority to an unsupervised S2O image translation method. Meanwhile, we find that the images generated by unsupervised methods suffer from significant detail deficiencies. To solve this problem, we propose a fine-grained generative adversarial network (FG-GAN) introducing three strategies to enhance the detailed information in generated optical images. First, we design an unbalanced generator (UBG) with complex encoder networks and relatively simple decoder networks. The complex encoder extracts abundant feature information, while the decoder obtains key details by filtering these features. Second, to match the learning ability of the generator, we present a multiscale discriminator (MSD) to enhance the discriminant ability of the network. Third, we propose a comprehensive normalization group (CNG) to promote the physical representation consistency of SAR and optical images. Extensive experiments have been conducted, and the results show that our method is superior to the state-of-the-art (SOTA) methods on both subjective and objective evaluation indicators. Moreover, our FG-GAN has a significant improvement on classification accuracy, indicating its potential in facilitating the performance of practical remote sensing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHH发布了新的文献求助10
刚刚
1秒前
歪歪完成签到,获得积分10
1秒前
菜鸟队长完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
xzzt完成签到 ,获得积分10
2秒前
英姑应助冷傲汽车采纳,获得10
2秒前
xinyuf完成签到,获得积分10
3秒前
3秒前
HMX发布了新的文献求助10
4秒前
hu123完成签到,获得积分10
4秒前
4秒前
5秒前
keyan应助yueweigang采纳,获得10
5秒前
纯真的盼柳完成签到,获得积分10
5秒前
5秒前
jeonghan发布了新的文献求助10
5秒前
所所应助笑点低的小天鹅采纳,获得10
6秒前
aaaaaa发布了新的文献求助10
6秒前
阿冰完成签到 ,获得积分10
6秒前
6秒前
陶醉土豆发布了新的文献求助10
6秒前
汪勇发布了新的文献求助10
7秒前
桐桐应助健忘芷采纳,获得10
7秒前
7秒前
Akim应助樊璐采纳,获得10
7秒前
夏枯完成签到,获得积分10
8秒前
8秒前
8秒前
sxm完成签到,获得积分10
9秒前
椰子糖发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
乐乐应助zy采纳,获得10
11秒前
miaogm发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618980
求助须知:如何正确求助?哪些是违规求助? 4703923
关于积分的说明 14924415
捐赠科研通 4758994
什么是DOI,文献DOI怎么找? 2550336
邀请新用户注册赠送积分活动 1513125
关于科研通互助平台的介绍 1474401