FG-GAN: A Fine-Grained Generative Adversarial Network for Unsupervised SAR-to-Optical Image Translation

计算机科学 鉴别器 人工智能 合成孔径雷达 图像翻译 散斑噪声 规范化(社会学) 模式识别(心理学) 计算机视觉 翻译(生物学) 发电机(电路理论) 图像(数学) 物理 社会学 信使核糖核酸 基因 探测器 功率(物理) 电信 化学 量子力学 生物化学 人类学
作者
Xi Yang,Zihan Wang,Jingyi Zhao,Dong Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:17
标识
DOI:10.1109/tgrs.2022.3165371
摘要

Synthetic aperture radar (SAR) and optical sensing are two important means of Earth observation. SAR can be used for all-day and all-weather Earth observation, but it has the disadvantages of speckle noise and geometric distortion, which are not conducive to human eye recognition. Optical image conforms to the characteristics of human visual observation, but it is easily affected by climate and time. Therefore, to integrate the advantages of the two, researchers have carried out extensive work on SAR-to-optical (S2O) image translation. Most of the existing methods for S2O image translation are supervised and need paired training samples, limiting its large-scale application in remote sensing field. Thus, we give priority to an unsupervised S2O image translation method. Meanwhile, we find that the images generated by unsupervised methods suffer from significant detail deficiencies. To solve this problem, we propose a fine-grained generative adversarial network (FG-GAN) introducing three strategies to enhance the detailed information in generated optical images. First, we design an unbalanced generator (UBG) with complex encoder networks and relatively simple decoder networks. The complex encoder extracts abundant feature information, while the decoder obtains key details by filtering these features. Second, to match the learning ability of the generator, we present a multiscale discriminator (MSD) to enhance the discriminant ability of the network. Third, we propose a comprehensive normalization group (CNG) to promote the physical representation consistency of SAR and optical images. Extensive experiments have been conducted, and the results show that our method is superior to the state-of-the-art (SOTA) methods on both subjective and objective evaluation indicators. Moreover, our FG-GAN has a significant improvement on classification accuracy, indicating its potential in facilitating the performance of practical remote sensing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呀小贝壳发布了新的文献求助10
1秒前
桐桐应助想水SCI采纳,获得10
3秒前
4秒前
xzl发布了新的文献求助10
5秒前
小小王完成签到 ,获得积分10
6秒前
华仔应助jovrtic采纳,获得10
6秒前
范范范完成签到,获得积分10
6秒前
曾经的康乃馨完成签到 ,获得积分10
7秒前
8秒前
10秒前
康康完成签到,获得积分10
10秒前
明理青丝完成签到 ,获得积分10
11秒前
Kail完成签到,获得积分10
11秒前
lsj2233发布了新的文献求助10
12秒前
13秒前
小马完成签到,获得积分10
13秒前
康康发布了新的文献求助10
13秒前
14秒前
重要的溪流完成签到,获得积分10
16秒前
豪的花花完成签到,获得积分10
16秒前
sun完成签到,获得积分20
16秒前
想水SCI发布了新的文献求助10
17秒前
sun发布了新的文献求助10
19秒前
袁奇点完成签到,获得积分10
19秒前
jovrtic发布了新的文献求助10
20秒前
21秒前
lsj2233完成签到,获得积分20
21秒前
25秒前
DDDD发布了新的文献求助10
26秒前
jovrtic完成签到,获得积分10
29秒前
sa完成签到 ,获得积分10
32秒前
zhaoxi完成签到 ,获得积分10
32秒前
33秒前
34秒前
yin完成签到 ,获得积分10
35秒前
棉袄完成签到 ,获得积分10
35秒前
36秒前
满意的芸完成签到 ,获得积分10
36秒前
hopen完成签到 ,获得积分10
37秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350943
求助须知:如何正确求助?哪些是违规求助? 2976496
关于积分的说明 8675277
捐赠科研通 2657650
什么是DOI,文献DOI怎么找? 1455181
科研通“疑难数据库(出版商)”最低求助积分说明 673739
邀请新用户注册赠送积分活动 664225