亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FG-GAN: A Fine-Grained Generative Adversarial Network for Unsupervised SAR-to-Optical Image Translation

计算机科学 鉴别器 人工智能 合成孔径雷达 图像翻译 散斑噪声 规范化(社会学) 模式识别(心理学) 计算机视觉 翻译(生物学) 发电机(电路理论) 图像(数学) 物理 社会学 信使核糖核酸 基因 探测器 功率(物理) 电信 化学 量子力学 生物化学 人类学
作者
Xi Yang,Zihan Wang,Jingyi Zhao,Dong Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:20
标识
DOI:10.1109/tgrs.2022.3165371
摘要

Synthetic aperture radar (SAR) and optical sensing are two important means of Earth observation. SAR can be used for all-day and all-weather Earth observation, but it has the disadvantages of speckle noise and geometric distortion, which are not conducive to human eye recognition. Optical image conforms to the characteristics of human visual observation, but it is easily affected by climate and time. Therefore, to integrate the advantages of the two, researchers have carried out extensive work on SAR-to-optical (S2O) image translation. Most of the existing methods for S2O image translation are supervised and need paired training samples, limiting its large-scale application in remote sensing field. Thus, we give priority to an unsupervised S2O image translation method. Meanwhile, we find that the images generated by unsupervised methods suffer from significant detail deficiencies. To solve this problem, we propose a fine-grained generative adversarial network (FG-GAN) introducing three strategies to enhance the detailed information in generated optical images. First, we design an unbalanced generator (UBG) with complex encoder networks and relatively simple decoder networks. The complex encoder extracts abundant feature information, while the decoder obtains key details by filtering these features. Second, to match the learning ability of the generator, we present a multiscale discriminator (MSD) to enhance the discriminant ability of the network. Third, we propose a comprehensive normalization group (CNG) to promote the physical representation consistency of SAR and optical images. Extensive experiments have been conducted, and the results show that our method is superior to the state-of-the-art (SOTA) methods on both subjective and objective evaluation indicators. Moreover, our FG-GAN has a significant improvement on classification accuracy, indicating its potential in facilitating the performance of practical remote sensing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助危机的雪旋采纳,获得10
16秒前
Hillson完成签到,获得积分10
17秒前
29秒前
36秒前
1分钟前
日富一日发布了新的文献求助10
1分钟前
zuihaodewomen完成签到 ,获得积分10
1分钟前
Phil完成签到 ,获得积分10
1分钟前
刘天宇完成签到 ,获得积分10
2分钟前
Sue完成签到 ,获得积分10
2分钟前
blueskyzhi完成签到,获得积分10
2分钟前
CodeCraft应助优秀的行云采纳,获得10
2分钟前
ysss0831完成签到,获得积分10
3分钟前
3分钟前
优秀的行云完成签到,获得积分10
3分钟前
zilt1109发布了新的文献求助10
3分钟前
赘婿应助Queena采纳,获得10
3分钟前
3分钟前
3分钟前
jfc完成签到 ,获得积分10
3分钟前
Queena发布了新的文献求助10
3分钟前
鲍惜寒完成签到 ,获得积分20
3分钟前
鲍惜寒发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
Becky完成签到 ,获得积分10
4分钟前
白华苍松发布了新的文献求助20
4分钟前
yhw完成签到,获得积分20
5分钟前
5分钟前
yhw发布了新的文献求助10
5分钟前
开放蓝天应助白华苍松采纳,获得10
5分钟前
Hello应助yhw采纳,获得10
5分钟前
小丸子和zz完成签到 ,获得积分10
5分钟前
JoeyJin完成签到,获得积分10
6分钟前
nuoberry完成签到,获得积分10
6分钟前
夜雨完成签到,获得积分10
6分钟前
花陵完成签到 ,获得积分10
6分钟前
Ethan完成签到,获得积分10
6分钟前
attention完成签到,获得积分10
6分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584659
求助须知:如何正确求助?哪些是违规求助? 4668590
关于积分的说明 14771485
捐赠科研通 4612783
什么是DOI,文献DOI怎么找? 2530133
邀请新用户注册赠送积分活动 1499067
关于科研通互助平台的介绍 1467499