FG-GAN: A Fine-Grained Generative Adversarial Network for Unsupervised SAR-to-Optical Image Translation

计算机科学 鉴别器 人工智能 合成孔径雷达 图像翻译 散斑噪声 规范化(社会学) 模式识别(心理学) 计算机视觉 翻译(生物学) 发电机(电路理论) 图像(数学) 物理 社会学 信使核糖核酸 基因 探测器 功率(物理) 电信 化学 量子力学 生物化学 人类学
作者
Xi Yang,Zihan Wang,Jingyi Zhao,Dong Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:20
标识
DOI:10.1109/tgrs.2022.3165371
摘要

Synthetic aperture radar (SAR) and optical sensing are two important means of Earth observation. SAR can be used for all-day and all-weather Earth observation, but it has the disadvantages of speckle noise and geometric distortion, which are not conducive to human eye recognition. Optical image conforms to the characteristics of human visual observation, but it is easily affected by climate and time. Therefore, to integrate the advantages of the two, researchers have carried out extensive work on SAR-to-optical (S2O) image translation. Most of the existing methods for S2O image translation are supervised and need paired training samples, limiting its large-scale application in remote sensing field. Thus, we give priority to an unsupervised S2O image translation method. Meanwhile, we find that the images generated by unsupervised methods suffer from significant detail deficiencies. To solve this problem, we propose a fine-grained generative adversarial network (FG-GAN) introducing three strategies to enhance the detailed information in generated optical images. First, we design an unbalanced generator (UBG) with complex encoder networks and relatively simple decoder networks. The complex encoder extracts abundant feature information, while the decoder obtains key details by filtering these features. Second, to match the learning ability of the generator, we present a multiscale discriminator (MSD) to enhance the discriminant ability of the network. Third, we propose a comprehensive normalization group (CNG) to promote the physical representation consistency of SAR and optical images. Extensive experiments have been conducted, and the results show that our method is superior to the state-of-the-art (SOTA) methods on both subjective and objective evaluation indicators. Moreover, our FG-GAN has a significant improvement on classification accuracy, indicating its potential in facilitating the performance of practical remote sensing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li2010发布了新的文献求助10
刚刚
张津硕完成签到,获得积分10
1秒前
1秒前
2秒前
wwb发布了新的文献求助10
2秒前
ceploup发布了新的文献求助10
3秒前
3秒前
4秒前
Lucas应助墨染霜采纳,获得10
4秒前
4秒前
4秒前
田様应助金开采纳,获得10
5秒前
5秒前
文静的无敌完成签到 ,获得积分10
5秒前
唯栀发布了新的文献求助30
5秒前
积极寻梅发布了新的文献求助10
7秒前
东方越彬发布了新的文献求助20
7秒前
SY1005发布了新的文献求助10
8秒前
8秒前
啊大大哇完成签到,获得积分10
8秒前
荆棘鸟完成签到,获得积分10
8秒前
SC发布了新的文献求助30
9秒前
ww完成签到,获得积分10
9秒前
liyi完成签到,获得积分20
9秒前
11秒前
Nii发布了新的文献求助10
12秒前
程老六完成签到 ,获得积分10
12秒前
13秒前
CodeCraft应助夕荀采纳,获得10
13秒前
13秒前
科研通AI6应助ceploup采纳,获得10
13秒前
我是老大应助ceploup采纳,获得10
14秒前
永溺深海的猫完成签到,获得积分10
14秒前
14秒前
purplelove完成签到 ,获得积分10
15秒前
lihui发布了新的文献求助10
15秒前
16秒前
三花完成签到,获得积分10
16秒前
Taxwitted完成签到,获得积分10
16秒前
阿里山发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589368
求助须知:如何正确求助?哪些是违规求助? 4674147
关于积分的说明 14791974
捐赠科研通 4628350
什么是DOI,文献DOI怎么找? 2532283
邀请新用户注册赠送积分活动 1500934
关于科研通互助平台的介绍 1468454