Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective

调度(生产过程) 计算机科学 电力系统 数学优化 稳健优化 电力系统仿真 工业工程 运筹学 功率(物理) 工程类 数学 量子力学 物理
作者
Haifeng Qiu,Wei Gu,Pengxiang Liu,Qirun Sun,Zhi Wu,Xi Lu
出处
期刊:Energy [Elsevier]
卷期号:251: 123942-123942 被引量:13
标识
DOI:10.1016/j.energy.2022.123942
摘要

Multi-uncertainties impose enormous challenges to the optimal scheduling of power systems, and two-stage robust optimization (TSRO) theory has been widely investigated and employed in this field as a valid processing approach. This paper primarily reviews the research on TSRO scheduling of power systems. Firstly, the general formulations and solution algorithms for multi-type TSRO models are summarized and categorized. Subsequently, various modeling methods for continuous and discrete uncertainties in power systems are generalized, along with their characteristics and advantages clarified by expounding application scopes and implementation values. Next, research work and achievements of TSRO in power system scheduling are reviewed from four aspects, i.e., unit commitment, economic dispatch, active/reactive power coordination and resilient dispatch, and the development and practicality of TSRO in the four directions are detailedly combed combining latest literature. Finally, according to the aforementioned analysis, existing research gaps are discussed from the aspects of formulation morphology, solution algorithm, uncertainty modeling and extended application, and the outlook of future work is provided accordingly. • Two-stage robust optimization (TSRO) is summarized from modeling structures. • General mathematical formulations and solution algorithms are given explicitly. • Various uncertainty sets in power systems are comprehensively overviewed. • State-of-the-art in TSRO scheduling is reviewed and analyzed from four perspectives. • Current research gaps and future directions are precisely pointed out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
NexusExplorer应助moon采纳,获得10
1秒前
1秒前
1秒前
2秒前
FashionBoy应助苁蓉远志采纳,获得10
2秒前
orixero应助勇敢的心采纳,获得10
2秒前
3秒前
4秒前
脑洞疼应助哈哈哈采纳,获得10
4秒前
蔡文姬发布了新的文献求助10
4秒前
RAY发布了新的文献求助30
4秒前
胖大海完成签到,获得积分10
5秒前
领导范儿应助谷粱采纳,获得10
5秒前
5秒前
友好靖巧发布了新的文献求助10
6秒前
Revovler发布了新的文献求助10
6秒前
7秒前
Mia关闭了Mia文献求助
7秒前
科研通AI5应助你好呀采纳,获得10
8秒前
8秒前
MesureWu完成签到,获得积分10
8秒前
曾经阁发布了新的文献求助10
8秒前
8秒前
9秒前
vivi完成签到,获得积分10
9秒前
红丽阿妹完成签到,获得积分10
10秒前
许启帆完成签到,获得积分20
10秒前
Owen应助驰驰采纳,获得10
12秒前
暴躁的豆芽完成签到,获得积分10
12秒前
许启帆发布了新的文献求助10
13秒前
13秒前
蜜桃奇迹发布了新的文献求助10
13秒前
伶俐璎完成签到,获得积分10
13秒前
momo完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
号行天下发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543260
求助须知:如何正确求助?哪些是违规求助? 3120651
关于积分的说明 9343550
捐赠科研通 2818657
什么是DOI,文献DOI怎么找? 1549757
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713078