作者
Rakesh Kumar Gupta,Muhammad Riaz,Mo Ashafaq,Zhiyong Gao,Rajender S. Varma,Dacheng Li,Ping Cui,Chen‐Ho Tung,Di Sun
摘要
Metal-organic frameworks (MOFs) endowed with unique structural features, namely permanent porosity, high surface area, tunable pore size, and potential applications in diverse domains, have garnered immense attention in recent decades. The availability of large numbers of organic linkers, metal nodes, and multiple synthetic tactics has broadened the scope of MOF research wherein the judicial selection of building blocks, and especially the organic linker is critical for the task-specific MOF design. The adenine nucleobase is an ideal choice among the broadly available organic linkers because of its small size, being nitrogen-riched and non-toxic, and its ready availability comprising multiple Lewis basic coordination sites and modes. In addition, adenine with its amino group (–NH2) can network through non-covalent interfaces (host and guest) rather than covalent interactions, i.e., hydrogen bonding via Watson-Crick (N1, N6H) and Hoogsteen (N7, N6H) face contact, thus making ensued adenine-based MOF materials more appealing. Herein, we appraise the general introduction of syntheses and design strategies, the structural influence of adenine incorporation to the ensued attributes of MOFs, and their applications in diverse research fields such as gas storage (selective adsorption of CO2), separation, luminescence, drug delivery, catalysis, and sensing.