亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Intelligent Framework for Alzheimer's disease Classification Using EfficientNet Transfer Learning Model

学习迁移 计算机科学 神经影像学 人工智能 机器学习 深度学习 模态(人机交互) 特征(语言学) 认知 特征工程 心理学 神经科学 语言学 哲学
作者
Monika Sethi,Sachin Ahuja,Sehajpreet Singh,Jyoti Verma,Mukesh Chawla
标识
DOI:10.1109/esci53509.2022.9758195
摘要

Alzheimer's disease (AD) is a prevalent psychological disorder. The economic cost of treating for AD patients is expected to increase. Therefore in the last few years, research on AD diagnostic has laid great emphasis on computer-aided methods. The significance of developing an artificial intelligent diagnostic technique towards accurate and early AD classification seems essential. Deep-learning models hold significant benefits over machine learning approaches as these techniques do not require any kind of feature engineering. Moreover, T1-weighted Magnetic Resonance Imaging (MRI) is the neuroimaging data modality which is widely practiced for such a purpose. In some cases, the most significant barrier to integrating DL models into pre-existing applications is a lack of adequate data architecture. Changing medical information is usually hard to communicate, examine, and interpret. Transfer learning (TL) allows designers to use a combination of models in order to fine-tune a specified solution to a target problem. Transferring knowledge across two separate models could lead a generally a more reliable and precise model. In this work, researchers utilized an EfficientNet TL model already trained on ImageNet dataset to categorise subjects as AD vs. Cognitive Normal (CN) based on MRI scans of the brain. The dataset for this study was acquired from Alzheimer Disease Neuroimaging Initiative (ADNI). The performance parameters such as accuracy, AUC were used to evaluate the model. The proposed model on ADNI dataset achieved an accuracy level of 91.36% and AUC as 83% in comparison to other existing transfer learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿欢完成签到,获得积分10
2秒前
阿欢发布了新的文献求助10
5秒前
追寻的梦凡完成签到 ,获得积分10
5秒前
9秒前
17秒前
tao完成签到 ,获得积分10
18秒前
SciGPT应助醉熏的幼珊采纳,获得10
19秒前
26秒前
30秒前
调研昵称发布了新的文献求助10
32秒前
46秒前
48秒前
56秒前
58秒前
英姑应助lou1219采纳,获得30
1分钟前
1分钟前
1分钟前
辛勤的剑成完成签到 ,获得积分10
1分钟前
guyutian应助Sym采纳,获得10
1分钟前
1分钟前
550482956谢发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助自信的坤采纳,获得10
1分钟前
大模型应助550482956谢采纳,获得10
1分钟前
坦率尔蝶完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
碧蓝香芦完成签到 ,获得积分10
1分钟前
英俊的铭应助550482956谢采纳,获得10
1分钟前
asd1576562308完成签到 ,获得积分10
1分钟前
杳鸢应助bji采纳,获得10
1分钟前
1分钟前
2分钟前
psypsy应助阳光以筠采纳,获得50
2分钟前
醉熏的幼珊完成签到,获得积分10
2分钟前
科研通AI2S应助兰贵人采纳,获得10
2分钟前
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
Darcy应助科研通管家采纳,获得30
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229674
求助须知:如何正确求助?哪些是违规求助? 2877215
关于积分的说明 8198517
捐赠科研通 2544692
什么是DOI,文献DOI怎么找? 1374549
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774