An Intelligent Framework for Alzheimer's disease Classification Using EfficientNet Transfer Learning Model

学习迁移 计算机科学 神经影像学 人工智能 机器学习 深度学习 模态(人机交互) 特征(语言学) 认知 特征工程 心理学 神经科学 语言学 哲学
作者
Monika Sethi,Sachin Ahuja,Sehajpreet Singh,Jyoti Verma,Mukesh Chawla
标识
DOI:10.1109/esci53509.2022.9758195
摘要

Alzheimer's disease (AD) is a prevalent psychological disorder. The economic cost of treating for AD patients is expected to increase. Therefore in the last few years, research on AD diagnostic has laid great emphasis on computer-aided methods. The significance of developing an artificial intelligent diagnostic technique towards accurate and early AD classification seems essential. Deep-learning models hold significant benefits over machine learning approaches as these techniques do not require any kind of feature engineering. Moreover, T1-weighted Magnetic Resonance Imaging (MRI) is the neuroimaging data modality which is widely practiced for such a purpose. In some cases, the most significant barrier to integrating DL models into pre-existing applications is a lack of adequate data architecture. Changing medical information is usually hard to communicate, examine, and interpret. Transfer learning (TL) allows designers to use a combination of models in order to fine-tune a specified solution to a target problem. Transferring knowledge across two separate models could lead a generally a more reliable and precise model. In this work, researchers utilized an EfficientNet TL model already trained on ImageNet dataset to categorise subjects as AD vs. Cognitive Normal (CN) based on MRI scans of the brain. The dataset for this study was acquired from Alzheimer Disease Neuroimaging Initiative (ADNI). The performance parameters such as accuracy, AUC were used to evaluate the model. The proposed model on ADNI dataset achieved an accuracy level of 91.36% and AUC as 83% in comparison to other existing transfer learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助chrysophoron采纳,获得10
2秒前
ttt完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
浅唱悲伤发布了新的文献求助10
3秒前
Owen应助Herly采纳,获得10
3秒前
Ava应助xuan采纳,获得10
3秒前
小鱼发布了新的文献求助10
4秒前
aaabua关注了科研通微信公众号
4秒前
落寞酸奶发布了新的文献求助10
4秒前
5秒前
tan完成签到,获得积分10
5秒前
7秒前
8秒前
9秒前
11秒前
落雨发布了新的文献求助10
12秒前
13秒前
xuan完成签到,获得积分10
13秒前
青儿发布了新的文献求助30
13秒前
浮游应助12采纳,获得10
13秒前
浮游应助12采纳,获得10
14秒前
14秒前
Li应助12采纳,获得10
14秒前
fanlin完成签到,获得积分0
15秒前
15秒前
chrysophoron发布了新的文献求助10
16秒前
17秒前
18秒前
1694315877给1694315877的求助进行了留言
18秒前
Orange应助顾子墨采纳,获得10
18秒前
研友_VZG7GZ应助倪倪采纳,获得10
19秒前
20秒前
20秒前
20秒前
zjt958发布了新的文献求助10
20秒前
晴漾发布了新的文献求助10
20秒前
lin发布了新的文献求助10
20秒前
21秒前
xuan发布了新的文献求助10
21秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5243021
求助须知:如何正确求助?哪些是违规求助? 4409500
关于积分的说明 13725269
捐赠科研通 4278818
什么是DOI,文献DOI怎么找? 2347832
邀请新用户注册赠送积分活动 1345089
关于科研通互助平台的介绍 1303146