An Intelligent Framework for Alzheimer's disease Classification Using EfficientNet Transfer Learning Model

学习迁移 计算机科学 神经影像学 人工智能 机器学习 深度学习 模态(人机交互) 特征(语言学) 认知 特征工程 心理学 神经科学 语言学 哲学
作者
Monika Sethi,Sachin Ahuja,Sehajpreet Singh,Jyoti Verma,Mukesh Chawla
标识
DOI:10.1109/esci53509.2022.9758195
摘要

Alzheimer's disease (AD) is a prevalent psychological disorder. The economic cost of treating for AD patients is expected to increase. Therefore in the last few years, research on AD diagnostic has laid great emphasis on computer-aided methods. The significance of developing an artificial intelligent diagnostic technique towards accurate and early AD classification seems essential. Deep-learning models hold significant benefits over machine learning approaches as these techniques do not require any kind of feature engineering. Moreover, T1-weighted Magnetic Resonance Imaging (MRI) is the neuroimaging data modality which is widely practiced for such a purpose. In some cases, the most significant barrier to integrating DL models into pre-existing applications is a lack of adequate data architecture. Changing medical information is usually hard to communicate, examine, and interpret. Transfer learning (TL) allows designers to use a combination of models in order to fine-tune a specified solution to a target problem. Transferring knowledge across two separate models could lead a generally a more reliable and precise model. In this work, researchers utilized an EfficientNet TL model already trained on ImageNet dataset to categorise subjects as AD vs. Cognitive Normal (CN) based on MRI scans of the brain. The dataset for this study was acquired from Alzheimer Disease Neuroimaging Initiative (ADNI). The performance parameters such as accuracy, AUC were used to evaluate the model. The proposed model on ADNI dataset achieved an accuracy level of 91.36% and AUC as 83% in comparison to other existing transfer learning models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助冷彬采纳,获得10
刚刚
5165asd完成签到,获得积分10
1秒前
zlzl发布了新的文献求助10
4秒前
4秒前
小白应助岳拔萃采纳,获得10
5秒前
5秒前
6秒前
AneyWinter66应助dida采纳,获得10
7秒前
科研通AI6应助土豪的香芦采纳,获得10
7秒前
7秒前
8秒前
8秒前
岱周完成签到,获得积分10
8秒前
10秒前
ding应助夜星寒月采纳,获得10
10秒前
小徐同志完成签到,获得积分10
11秒前
11秒前
冷彬发布了新的文献求助10
11秒前
12秒前
pddl发布了新的文献求助80
13秒前
13秒前
syl发布了新的文献求助20
14秒前
索李拉俊发布了新的文献求助10
15秒前
15秒前
大晨发布了新的文献求助10
17秒前
正月初九完成签到,获得积分10
17秒前
高妍纯发布了新的文献求助10
17秒前
小李发布了新的文献求助10
18秒前
丘比特应助牧歌采纳,获得10
18秒前
18秒前
积极向卉发布了新的文献求助10
20秒前
20秒前
破风老司机完成签到,获得积分10
20秒前
cc发布了新的文献求助10
20秒前
21秒前
BowieHuang应助kiminonawa采纳,获得10
23秒前
可可发布了新的文献求助10
24秒前
科研通AI6应助晶晶采纳,获得10
25秒前
25秒前
北风语完成签到,获得积分10
25秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588437
求助须知:如何正确求助?哪些是违规求助? 4671534
关于积分的说明 14787623
捐赠科研通 4625353
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314