亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Intelligent Framework for Alzheimer's disease Classification Using EfficientNet Transfer Learning Model

学习迁移 计算机科学 神经影像学 人工智能 机器学习 深度学习 模态(人机交互) 特征(语言学) 认知 特征工程 心理学 神经科学 语言学 哲学
作者
Monika Sethi,Sachin Ahuja,Sehajpreet Singh,Jyoti Verma,Mukesh Chawla
标识
DOI:10.1109/esci53509.2022.9758195
摘要

Alzheimer's disease (AD) is a prevalent psychological disorder. The economic cost of treating for AD patients is expected to increase. Therefore in the last few years, research on AD diagnostic has laid great emphasis on computer-aided methods. The significance of developing an artificial intelligent diagnostic technique towards accurate and early AD classification seems essential. Deep-learning models hold significant benefits over machine learning approaches as these techniques do not require any kind of feature engineering. Moreover, T1-weighted Magnetic Resonance Imaging (MRI) is the neuroimaging data modality which is widely practiced for such a purpose. In some cases, the most significant barrier to integrating DL models into pre-existing applications is a lack of adequate data architecture. Changing medical information is usually hard to communicate, examine, and interpret. Transfer learning (TL) allows designers to use a combination of models in order to fine-tune a specified solution to a target problem. Transferring knowledge across two separate models could lead a generally a more reliable and precise model. In this work, researchers utilized an EfficientNet TL model already trained on ImageNet dataset to categorise subjects as AD vs. Cognitive Normal (CN) based on MRI scans of the brain. The dataset for this study was acquired from Alzheimer Disease Neuroimaging Initiative (ADNI). The performance parameters such as accuracy, AUC were used to evaluate the model. The proposed model on ADNI dataset achieved an accuracy level of 91.36% and AUC as 83% in comparison to other existing transfer learning models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Jayzie完成签到 ,获得积分10
12秒前
神医magical完成签到,获得积分20
13秒前
27秒前
28秒前
牛牛的马发布了新的文献求助10
32秒前
标致金毛完成签到,获得积分10
33秒前
自由芝发布了新的文献求助10
34秒前
Yxy2021完成签到 ,获得积分10
37秒前
天天天晴完成签到 ,获得积分10
39秒前
46秒前
mingjing完成签到 ,获得积分10
48秒前
Criminology34应助科研通管家采纳,获得10
49秒前
YifanWang应助科研通管家采纳,获得10
49秒前
赘婿应助朴素寄文采纳,获得10
49秒前
51秒前
自由芝完成签到,获得积分10
51秒前
研友_VZG7GZ应助klandcy采纳,获得10
56秒前
谢谢谢发布了新的文献求助10
1分钟前
嘿嘿应助breeze采纳,获得30
1分钟前
1分钟前
klandcy发布了新的文献求助10
1分钟前
星之所向完成签到 ,获得积分10
1分钟前
1分钟前
shentaii完成签到,获得积分10
1分钟前
重要的智宸应助谢谢谢采纳,获得10
1分钟前
重要的智宸应助谢谢谢采纳,获得10
1分钟前
小天才狗蛋完成签到,获得积分10
1分钟前
sensen完成签到,获得积分10
1分钟前
小蘑菇应助sensen采纳,获得10
1分钟前
1分钟前
JL完成签到 ,获得积分10
1分钟前
sensen发布了新的文献求助10
1分钟前
脑洞疼应助ocseek采纳,获得10
1分钟前
1分钟前
2分钟前
sora98完成签到 ,获得积分10
2分钟前
2分钟前
zhuzhu发布了新的文献求助10
2分钟前
可爱的函函应助zhuzhu采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568181
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701886
捐赠科研通 4594521
什么是DOI,文献DOI怎么找? 2521010
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696