An Intelligent Framework for Alzheimer's disease Classification Using EfficientNet Transfer Learning Model

学习迁移 计算机科学 神经影像学 人工智能 机器学习 深度学习 模态(人机交互) 特征(语言学) 认知 特征工程 心理学 神经科学 语言学 哲学
作者
Monika Sethi,Sachin Ahuja,Sehajpreet Singh,Jyoti Verma,Mukesh Chawla
标识
DOI:10.1109/esci53509.2022.9758195
摘要

Alzheimer's disease (AD) is a prevalent psychological disorder. The economic cost of treating for AD patients is expected to increase. Therefore in the last few years, research on AD diagnostic has laid great emphasis on computer-aided methods. The significance of developing an artificial intelligent diagnostic technique towards accurate and early AD classification seems essential. Deep-learning models hold significant benefits over machine learning approaches as these techniques do not require any kind of feature engineering. Moreover, T1-weighted Magnetic Resonance Imaging (MRI) is the neuroimaging data modality which is widely practiced for such a purpose. In some cases, the most significant barrier to integrating DL models into pre-existing applications is a lack of adequate data architecture. Changing medical information is usually hard to communicate, examine, and interpret. Transfer learning (TL) allows designers to use a combination of models in order to fine-tune a specified solution to a target problem. Transferring knowledge across two separate models could lead a generally a more reliable and precise model. In this work, researchers utilized an EfficientNet TL model already trained on ImageNet dataset to categorise subjects as AD vs. Cognitive Normal (CN) based on MRI scans of the brain. The dataset for this study was acquired from Alzheimer Disease Neuroimaging Initiative (ADNI). The performance parameters such as accuracy, AUC were used to evaluate the model. The proposed model on ADNI dataset achieved an accuracy level of 91.36% and AUC as 83% in comparison to other existing transfer learning models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Hanoi347发布了新的文献求助200
2秒前
科研通AI6应助肥团采纳,获得10
2秒前
小美发布了新的文献求助10
3秒前
5秒前
6秒前
7秒前
天天快乐应助李小皮采纳,获得10
7秒前
9秒前
9秒前
PingxuZhang完成签到,获得积分10
9秒前
wwwzy发布了新的文献求助10
11秒前
孤独非笑完成签到,获得积分10
11秒前
12秒前
LSF发布了新的文献求助10
12秒前
wwrjj发布了新的文献求助10
14秒前
15秒前
LIZI22完成签到,获得积分10
15秒前
18秒前
LIZI22发布了新的文献求助10
18秒前
斯人完成签到 ,获得积分10
19秒前
Ac完成签到,获得积分10
20秒前
wwwzy完成签到,获得积分10
22秒前
24秒前
延胡索发布了新的文献求助10
24秒前
乐乐应助dogshit采纳,获得10
25秒前
111完成签到,获得积分20
26秒前
火星上安寒完成签到,获得积分20
28秒前
28秒前
29秒前
李小皮发布了新的文献求助10
29秒前
PTF应助怎么办采纳,获得10
29秒前
搜集达人应助菜鸟学习采纳,获得10
30秒前
31秒前
领导范儿应助LSF采纳,获得10
31秒前
烟花应助奇异果熊猫人采纳,获得10
32秒前
32秒前
CodeCraft应助延胡索采纳,获得10
33秒前
33秒前
义气的巨人完成签到,获得积分10
34秒前
淡然冬灵发布了新的文献求助10
34秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500984
求助须知:如何正确求助?哪些是违规求助? 4597393
关于积分的说明 14458827
捐赠科研通 4530714
什么是DOI,文献DOI怎么找? 2482919
邀请新用户注册赠送积分活动 1466601
关于科研通互助平台的介绍 1439291