已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Intelligent Framework for Alzheimer's disease Classification Using EfficientNet Transfer Learning Model

学习迁移 计算机科学 神经影像学 人工智能 机器学习 深度学习 模态(人机交互) 特征(语言学) 认知 特征工程 心理学 神经科学 语言学 哲学
作者
Monika Sethi,Sachin Ahuja,Sehajpreet Singh,Jyoti Verma,Mukesh Chawla
标识
DOI:10.1109/esci53509.2022.9758195
摘要

Alzheimer's disease (AD) is a prevalent psychological disorder. The economic cost of treating for AD patients is expected to increase. Therefore in the last few years, research on AD diagnostic has laid great emphasis on computer-aided methods. The significance of developing an artificial intelligent diagnostic technique towards accurate and early AD classification seems essential. Deep-learning models hold significant benefits over machine learning approaches as these techniques do not require any kind of feature engineering. Moreover, T1-weighted Magnetic Resonance Imaging (MRI) is the neuroimaging data modality which is widely practiced for such a purpose. In some cases, the most significant barrier to integrating DL models into pre-existing applications is a lack of adequate data architecture. Changing medical information is usually hard to communicate, examine, and interpret. Transfer learning (TL) allows designers to use a combination of models in order to fine-tune a specified solution to a target problem. Transferring knowledge across two separate models could lead a generally a more reliable and precise model. In this work, researchers utilized an EfficientNet TL model already trained on ImageNet dataset to categorise subjects as AD vs. Cognitive Normal (CN) based on MRI scans of the brain. The dataset for this study was acquired from Alzheimer Disease Neuroimaging Initiative (ADNI). The performance parameters such as accuracy, AUC were used to evaluate the model. The proposed model on ADNI dataset achieved an accuracy level of 91.36% and AUC as 83% in comparison to other existing transfer learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxfsx应助研友_LMN6jn采纳,获得20
1秒前
2秒前
zlx发布了新的文献求助10
2秒前
2秒前
4秒前
聪慧的哈吉米完成签到 ,获得积分10
5秒前
linllll完成签到,获得积分10
6秒前
默默靖易发布了新的文献求助100
6秒前
zzh完成签到,获得积分10
6秒前
Yyyyuy发布了新的文献求助10
6秒前
欣慰立轩发布了新的文献求助10
8秒前
8秒前
9秒前
11秒前
bji完成签到,获得积分10
12秒前
rngay发布了新的文献求助10
13秒前
旺旺碎冰冰完成签到,获得积分10
13秒前
QIUQIU完成签到,获得积分20
13秒前
14秒前
15秒前
MaggieFuuu发布了新的文献求助10
16秒前
17秒前
李国铭关注了科研通微信公众号
17秒前
17秒前
情怀应助忧郁小刺猬采纳,获得10
18秒前
Ava应助Yyyyuy采纳,获得10
18秒前
19秒前
llll发布了新的文献求助10
19秒前
20秒前
LLL发布了新的文献求助10
21秒前
21秒前
Morning晨发布了新的文献求助10
21秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得10
24秒前
ccm应助科研通管家采纳,获得10
25秒前
大个应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449335
求助须知:如何正确求助?哪些是违规求助? 4557505
关于积分的说明 14263900
捐赠科研通 4480602
什么是DOI,文献DOI怎么找? 2454498
邀请新用户注册赠送积分活动 1445221
关于科研通互助平台的介绍 1421016