An Intelligent Framework for Alzheimer's disease Classification Using EfficientNet Transfer Learning Model

学习迁移 计算机科学 神经影像学 人工智能 机器学习 深度学习 模态(人机交互) 特征(语言学) 认知 特征工程 心理学 神经科学 语言学 哲学
作者
Monika Sethi,Sachin Ahuja,Sehajpreet Singh,Jyoti Verma,Mukesh Chawla
标识
DOI:10.1109/esci53509.2022.9758195
摘要

Alzheimer's disease (AD) is a prevalent psychological disorder. The economic cost of treating for AD patients is expected to increase. Therefore in the last few years, research on AD diagnostic has laid great emphasis on computer-aided methods. The significance of developing an artificial intelligent diagnostic technique towards accurate and early AD classification seems essential. Deep-learning models hold significant benefits over machine learning approaches as these techniques do not require any kind of feature engineering. Moreover, T1-weighted Magnetic Resonance Imaging (MRI) is the neuroimaging data modality which is widely practiced for such a purpose. In some cases, the most significant barrier to integrating DL models into pre-existing applications is a lack of adequate data architecture. Changing medical information is usually hard to communicate, examine, and interpret. Transfer learning (TL) allows designers to use a combination of models in order to fine-tune a specified solution to a target problem. Transferring knowledge across two separate models could lead a generally a more reliable and precise model. In this work, researchers utilized an EfficientNet TL model already trained on ImageNet dataset to categorise subjects as AD vs. Cognitive Normal (CN) based on MRI scans of the brain. The dataset for this study was acquired from Alzheimer Disease Neuroimaging Initiative (ADNI). The performance parameters such as accuracy, AUC were used to evaluate the model. The proposed model on ADNI dataset achieved an accuracy level of 91.36% and AUC as 83% in comparison to other existing transfer learning models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助不安的凡桃采纳,获得10
刚刚
Owen应助棕榈采纳,获得10
2秒前
Sakurasamada发布了新的文献求助20
2秒前
2秒前
白羊完成签到,获得积分10
3秒前
3秒前
薛之谦的猫应助任性白秋采纳,获得10
3秒前
向日葵完成签到 ,获得积分10
3秒前
Lee完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
Lee发布了新的文献求助10
7秒前
7秒前
潇洒毛给潇洒毛的求助进行了留言
8秒前
颖火虫2588发布了新的文献求助10
8秒前
9秒前
小冯发布了新的文献求助10
10秒前
10秒前
Sandjames1889发布了新的文献求助10
10秒前
lqhccww发布了新的文献求助10
11秒前
深情安青应助chongmu采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
LYZ完成签到,获得积分10
14秒前
小毛完成签到,获得积分20
14秒前
14秒前
14秒前
长情宛儿发布了新的文献求助10
14秒前
15秒前
Mlwwq发布了新的文献求助10
15秒前
Liu完成签到 ,获得积分10
16秒前
bibi发布了新的文献求助10
16秒前
清醒且开心完成签到,获得积分10
17秒前
康娜完成签到,获得积分10
17秒前
17秒前
puzhongjiMiQ发布了新的文献求助10
18秒前
NexusExplorer应助木易北北采纳,获得10
19秒前
pluto应助祖老头采纳,获得10
21秒前
英姑应助祖老头采纳,获得10
21秒前
所所应助清一采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594501
求助须知:如何正确求助?哪些是违规求助? 4680157
关于积分的说明 14813307
捐赠科研通 4647283
什么是DOI,文献DOI怎么找? 2534960
邀请新用户注册赠送积分活动 1503016
关于科研通互助平台的介绍 1469521