An Intelligent Framework for Alzheimer's disease Classification Using EfficientNet Transfer Learning Model

学习迁移 计算机科学 神经影像学 人工智能 机器学习 深度学习 模态(人机交互) 特征(语言学) 认知 特征工程 心理学 神经科学 语言学 哲学
作者
Monika Sethi,Sachin Ahuja,Sehajpreet Singh,Jyoti Verma,Mukesh Chawla
标识
DOI:10.1109/esci53509.2022.9758195
摘要

Alzheimer's disease (AD) is a prevalent psychological disorder. The economic cost of treating for AD patients is expected to increase. Therefore in the last few years, research on AD diagnostic has laid great emphasis on computer-aided methods. The significance of developing an artificial intelligent diagnostic technique towards accurate and early AD classification seems essential. Deep-learning models hold significant benefits over machine learning approaches as these techniques do not require any kind of feature engineering. Moreover, T1-weighted Magnetic Resonance Imaging (MRI) is the neuroimaging data modality which is widely practiced for such a purpose. In some cases, the most significant barrier to integrating DL models into pre-existing applications is a lack of adequate data architecture. Changing medical information is usually hard to communicate, examine, and interpret. Transfer learning (TL) allows designers to use a combination of models in order to fine-tune a specified solution to a target problem. Transferring knowledge across two separate models could lead a generally a more reliable and precise model. In this work, researchers utilized an EfficientNet TL model already trained on ImageNet dataset to categorise subjects as AD vs. Cognitive Normal (CN) based on MRI scans of the brain. The dataset for this study was acquired from Alzheimer Disease Neuroimaging Initiative (ADNI). The performance parameters such as accuracy, AUC were used to evaluate the model. The proposed model on ADNI dataset achieved an accuracy level of 91.36% and AUC as 83% in comparison to other existing transfer learning models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
WAMK发布了新的文献求助30
1秒前
贺贺完成签到,获得积分10
1秒前
今后应助秋空采纳,获得10
2秒前
虚幻青筠完成签到 ,获得积分10
2秒前
华仔应助风吹草动玉米粒采纳,获得10
2秒前
小橙子发布了新的文献求助10
3秒前
3秒前
活泼的铃铛完成签到,获得积分20
4秒前
CipherSage应助愉快芜榆采纳,获得10
4秒前
juqiu发布了新的文献求助10
4秒前
4秒前
5秒前
Ava应助feizhuliu采纳,获得10
5秒前
lxy发布了新的文献求助10
5秒前
chenjunyong17完成签到,获得积分10
5秒前
悲凉的新筠完成签到,获得积分20
7秒前
乐天完成签到,获得积分10
7秒前
活泼听露发布了新的文献求助10
7秒前
8秒前
传奇3应助juqiu采纳,获得10
8秒前
隐形曼青应助sinlar采纳,获得10
8秒前
8秒前
张nmky完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
Hello应助沉静秋尽采纳,获得10
10秒前
Gc发布了新的文献求助10
11秒前
11秒前
biye完成签到 ,获得积分10
11秒前
11秒前
东糸容完成签到,获得积分10
12秒前
退休小行星完成签到,获得积分10
12秒前
勤恳易谙发布了新的文献求助10
13秒前
追梦1998发布了新的文献求助10
13秒前
siina发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783962
求助须知:如何正确求助?哪些是违规求助? 5680156
关于积分的说明 15462775
捐赠科研通 4913312
什么是DOI,文献DOI怎么找? 2644592
邀请新用户注册赠送积分活动 1592399
关于科研通互助平台的介绍 1547026