An Intelligent Framework for Alzheimer's disease Classification Using EfficientNet Transfer Learning Model

学习迁移 计算机科学 神经影像学 人工智能 机器学习 深度学习 模态(人机交互) 特征(语言学) 认知 特征工程 心理学 神经科学 语言学 哲学
作者
Monika Sethi,Sachin Ahuja,Sehajpreet Singh,Jyoti Verma,Mukesh Chawla
标识
DOI:10.1109/esci53509.2022.9758195
摘要

Alzheimer's disease (AD) is a prevalent psychological disorder. The economic cost of treating for AD patients is expected to increase. Therefore in the last few years, research on AD diagnostic has laid great emphasis on computer-aided methods. The significance of developing an artificial intelligent diagnostic technique towards accurate and early AD classification seems essential. Deep-learning models hold significant benefits over machine learning approaches as these techniques do not require any kind of feature engineering. Moreover, T1-weighted Magnetic Resonance Imaging (MRI) is the neuroimaging data modality which is widely practiced for such a purpose. In some cases, the most significant barrier to integrating DL models into pre-existing applications is a lack of adequate data architecture. Changing medical information is usually hard to communicate, examine, and interpret. Transfer learning (TL) allows designers to use a combination of models in order to fine-tune a specified solution to a target problem. Transferring knowledge across two separate models could lead a generally a more reliable and precise model. In this work, researchers utilized an EfficientNet TL model already trained on ImageNet dataset to categorise subjects as AD vs. Cognitive Normal (CN) based on MRI scans of the brain. The dataset for this study was acquired from Alzheimer Disease Neuroimaging Initiative (ADNI). The performance parameters such as accuracy, AUC were used to evaluate the model. The proposed model on ADNI dataset achieved an accuracy level of 91.36% and AUC as 83% in comparison to other existing transfer learning models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
窗窗窗雨发布了新的文献求助10
刚刚
刚刚
Scout发布了新的文献求助10
刚刚
1秒前
1秒前
索维奇完成签到,获得积分10
1秒前
1秒前
jyu完成签到,获得积分10
1秒前
1秒前
2秒前
浮游应助陶醉的难破采纳,获得10
3秒前
浮游应助陶醉的难破采纳,获得10
3秒前
4秒前
4秒前
4秒前
5秒前
YAMO一发布了新的文献求助10
5秒前
耍酷含芙发布了新的文献求助30
5秒前
6秒前
diplomat完成签到,获得积分10
6秒前
秋慕蕊发布了新的文献求助10
7秒前
h0jian09发布了新的文献求助10
7秒前
LIYI发布了新的文献求助10
7秒前
7秒前
kjwu完成签到,获得积分20
7秒前
hrzmlily完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
我是小张发布了新的文献求助10
8秒前
9秒前
Jasper应助十二采纳,获得10
9秒前
橘子完成签到,获得积分10
9秒前
阿冰完成签到 ,获得积分10
9秒前
Owen应助tingzi采纳,获得10
9秒前
lt发布了新的文献求助10
10秒前
栀蓝发布了新的文献求助10
10秒前
wzt发布了新的文献求助10
10秒前
ding应助yuan采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511900
求助须知:如何正确求助?哪些是违规求助? 4606342
关于积分的说明 14499341
捐赠科研通 4541779
什么是DOI,文献DOI怎么找? 2488670
邀请新用户注册赠送积分活动 1470704
关于科研通互助平台的介绍 1443017