An Intelligent Framework for Alzheimer's disease Classification Using EfficientNet Transfer Learning Model

学习迁移 计算机科学 神经影像学 人工智能 机器学习 深度学习 模态(人机交互) 特征(语言学) 认知 特征工程 心理学 神经科学 语言学 哲学
作者
Monika Sethi,Sachin Ahuja,Sehajpreet Singh,Jyoti Verma,Mukesh Chawla
标识
DOI:10.1109/esci53509.2022.9758195
摘要

Alzheimer's disease (AD) is a prevalent psychological disorder. The economic cost of treating for AD patients is expected to increase. Therefore in the last few years, research on AD diagnostic has laid great emphasis on computer-aided methods. The significance of developing an artificial intelligent diagnostic technique towards accurate and early AD classification seems essential. Deep-learning models hold significant benefits over machine learning approaches as these techniques do not require any kind of feature engineering. Moreover, T1-weighted Magnetic Resonance Imaging (MRI) is the neuroimaging data modality which is widely practiced for such a purpose. In some cases, the most significant barrier to integrating DL models into pre-existing applications is a lack of adequate data architecture. Changing medical information is usually hard to communicate, examine, and interpret. Transfer learning (TL) allows designers to use a combination of models in order to fine-tune a specified solution to a target problem. Transferring knowledge across two separate models could lead a generally a more reliable and precise model. In this work, researchers utilized an EfficientNet TL model already trained on ImageNet dataset to categorise subjects as AD vs. Cognitive Normal (CN) based on MRI scans of the brain. The dataset for this study was acquired from Alzheimer Disease Neuroimaging Initiative (ADNI). The performance parameters such as accuracy, AUC were used to evaluate the model. The proposed model on ADNI dataset achieved an accuracy level of 91.36% and AUC as 83% in comparison to other existing transfer learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyz完成签到,获得积分20
1秒前
冷面完成签到,获得积分10
2秒前
5秒前
Pioneer完成签到 ,获得积分10
6秒前
NexusExplorer应助乌拉拉采纳,获得10
6秒前
怎样发布了新的文献求助10
6秒前
小羊完成签到 ,获得积分10
7秒前
大力的映雁完成签到,获得积分10
7秒前
小巧的雅旋发布了新的文献求助100
8秒前
8秒前
9秒前
一一发布了新的文献求助10
9秒前
小鱼应助科研通管家采纳,获得100
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
风清扬应助科研通管家采纳,获得150
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得20
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
风清扬应助科研通管家采纳,获得150
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
星星又累完成签到,获得积分10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
等等完成签到,获得积分10
13秒前
善学以致用应助背后半凡采纳,获得10
14秒前
碗碗发布了新的文献求助10
14秒前
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4916519
求助须知:如何正确求助?哪些是违规求助? 4189911
关于积分的说明 13013108
捐赠科研通 3959368
什么是DOI,文献DOI怎么找? 2170712
邀请新用户注册赠送积分活动 1188771
关于科研通互助平台的介绍 1096789