Exploiting Intra-Slice and Inter-Slice Redundancy for Learning-Based Lossless Volumetric Image Compression

无损压缩 计算机科学 人工智能 数据压缩 熵(时间箭头) 有损压缩 熵编码 图像压缩 算术编码 冗余(工程) 模式识别(心理学) 计算机视觉 算法 图像处理 图像(数学) 上下文自适应二进制算术编码 物理 操作系统 量子力学
作者
Zhenghao Chen,Shuhang Gu,Guo Lu,Dong Xu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1697-1707 被引量:27
标识
DOI:10.1109/tip.2022.3140608
摘要

3D volumetric image processing has attracted increasing attention in the last decades, in which one major research area is to develop efficient lossless volumetric image compression techniques to better store and transmit such images with massive amount of information. In this work, we propose the first end-to-end optimized learning framework for losslessly compressing 3D volumetric data. Our approach builds upon a hierarchical compression scheme by additionally introducing the intra-slice auxiliary features and estimating the entropy model based on both intra-slice and inter-slice latent priors. Specifically, we first extract the hierarchical intra-slice auxiliary features through multi-scale feature extraction modules. Then, an Intra-slice and Inter-slice Conditional Entropy Coding module is proposed to fuse the intra-slice and inter-slice information from different scales as the context information. Based on such context information, we can predict the distributions for both intra-slice auxiliary features and the slice images. To further improve the lossless compression performance, we also introduce two new gating mechanisms called Intra-Gate and Inter-Gate to generate the optimal feature representations for better information fusion. Eventually, we can produce the bitstream for losslessly compressing volumetric images based on the estimated entropy model. Different from the existing lossless volumetric image codecs, our end-to-end optimized framework jointly learns both intra-slice auxiliary features at different scales for each slice and inter-slice latent features from previously encoded slices for better entropy estimation. The extensive experimental results indicate that our framework outperforms the state-of-the-art hand-crafted lossless volumetric image codecs (e.g., JP3D) and the learning-based lossless image compression method on four volumetric image benchmarks for losslessly compressing both 3D Medical Images and Hyper-Spectral Images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顺利鸡完成签到,获得积分10
1秒前
1秒前
星星轨迹发布了新的文献求助10
1秒前
高兴的土豆完成签到,获得积分10
2秒前
现实的映波完成签到,获得积分10
2秒前
2秒前
西瓜完成签到 ,获得积分10
2秒前
光之律者完成签到,获得积分10
2秒前
bkagyin应助十二曲阑干采纳,获得10
5秒前
鸽鸽发布了新的文献求助10
5秒前
Owen应助彩色的水蜜桃采纳,获得10
5秒前
kay关闭了kay文献求助
5秒前
popcorn完成签到 ,获得积分10
5秒前
6秒前
李爱国应助rotator采纳,获得10
8秒前
隐形曼青应助吃猫的鱼采纳,获得10
8秒前
keimer完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
ding应助bill采纳,获得10
9秒前
11秒前
XYS完成签到,获得积分10
12秒前
xpy发布了新的文献求助10
13秒前
吕元乔发布了新的文献求助10
13秒前
羊了个羊完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
14秒前
33发布了新的文献求助10
15秒前
哈哈发布了新的文献求助10
15秒前
传奇3应助忧虑的代芙采纳,获得10
16秒前
小马甲应助小鱼头采纳,获得10
16秒前
17秒前
科研通AI2S应助靖123456采纳,获得10
20秒前
20秒前
樱_花qxy发布了新的文献求助10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454789
求助须知:如何正确求助?哪些是违规求助? 3049989
关于积分的说明 9020079
捐赠科研通 2738731
什么是DOI,文献DOI怎么找? 1502219
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693143