亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM

分割 地质学 计算机科学 深度学习 基本事实 人工智能 像素 图像分割 模式识别(心理学) 计算机视觉
作者
Hongsheng Wang,Laura E. Dalton,Ming Fan,Ruichang Guo,James E. McClure,Dustin Crandall,Cheng Chen
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:215: 110596-110596 被引量:29
标识
DOI:10.1016/j.petrol.2022.110596
摘要

Three-dimensional (3D) X-ray micro-computed tomography (μCT) has been widely used in petroleum engineering because it can provide detailed pore structural information for a reservoir rock, which can be imported into a pore-scale numerical model to simulate the transport and distribution of multiple fluids in the pore space. The partial volume blurring (PVB) problem is a major challenge in segmenting raw μCT images of rock samples, which impacts boundaries and small targets near the resolution limit. We developed a deep-learning (DL)-based workflow for accurate and fast partial volume segmentation. The DL model's performance depends primarily on the training data quality and model architecture. This study employed the entropy-based-masking indicator kriging (IK-EBM) to segment 3D Berea sandstone images as training datasets. The comparison between IK-EBM and manual segmentation using a 3D synthetic sphere pack, which had a known ground truth, showed that IK-EBM had higher accuracy on partial volume segmentation. We then trained and tested the UNet++ model, a state-of-the-art supervised encoder-decoder model, for binary (i.e., void and solid) and four-class segmentation. We compared the UNet++ with the commonly used U-Net and wide U-Net models and showed that the UNet++ had the best performance in terms of pixel-wise and physics-based evaluation metrics. Specifically, boundary-scaled accuracy demonstrated that the UNet++ architecture outperformed the regular U-Net architecture in the segmentation of pixels near boundaries and small targets, which were subjected to the PVB effect. Feature map visualization illustrated that the UNet++ bridged the semantic gaps between the feature maps extracted at different depths of the network, thereby enabling faster convergence and more accurate extraction of fine-scale features. The developed workflow significantly enhances the performance of supervised encoder-decoder models in partial volume segmentation, which has extensive applications in fundamental studies of subsurface energy, water, and environmental systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
斯文败类应助落寞惮采纳,获得10
3秒前
852应助VDC采纳,获得10
7秒前
18秒前
章鱼完成签到,获得积分10
20秒前
VDC发布了新的文献求助10
23秒前
23秒前
闵凝竹完成签到 ,获得积分0
27秒前
YNHN发布了新的文献求助10
29秒前
39秒前
脑洞疼应助YNHN采纳,获得10
41秒前
wingmay发布了新的文献求助10
44秒前
49秒前
49秒前
科研通AI6应助yexu采纳,获得10
52秒前
Thi发布了新的文献求助10
55秒前
落寞惮发布了新的文献求助10
55秒前
酒渡完成签到,获得积分10
59秒前
刘刘完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ZanE完成签到,获得积分10
1分钟前
1分钟前
SUnnnnn发布了新的文献求助10
1分钟前
慕青应助落寞惮采纳,获得10
1分钟前
善学以致用应助SUnnnnn采纳,获得10
1分钟前
1分钟前
烟花应助chen采纳,获得10
1分钟前
打打应助邬美杰采纳,获得10
1分钟前
聪慧凡雁完成签到,获得积分10
2分钟前
英姑应助聪慧凡雁采纳,获得10
2分钟前
YYL完成签到 ,获得积分10
2分钟前
2分钟前
聪慧凡雁发布了新的文献求助10
2分钟前
科研通AI6应助哈哈我采纳,获得10
2分钟前
guanoo完成签到,获得积分10
2分钟前
求助中完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650948
求助须知:如何正确求助?哪些是违规求助? 4782100
关于积分的说明 15052770
捐赠科研通 4809707
什么是DOI,文献DOI怎么找? 2572518
邀请新用户注册赠送积分活动 1528569
关于科研通互助平台的介绍 1487529