清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM

分割 地质学 计算机科学 深度学习 基本事实 人工智能 像素 图像分割 模式识别(心理学) 计算机视觉
作者
Hongsheng Wang,Laura E. Dalton,Ming Fan,Ruichang Guo,James E. McClure,Dustin Crandall,Cheng Chen
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:215: 110596-110596 被引量:29
标识
DOI:10.1016/j.petrol.2022.110596
摘要

Three-dimensional (3D) X-ray micro-computed tomography (μCT) has been widely used in petroleum engineering because it can provide detailed pore structural information for a reservoir rock, which can be imported into a pore-scale numerical model to simulate the transport and distribution of multiple fluids in the pore space. The partial volume blurring (PVB) problem is a major challenge in segmenting raw μCT images of rock samples, which impacts boundaries and small targets near the resolution limit. We developed a deep-learning (DL)-based workflow for accurate and fast partial volume segmentation. The DL model's performance depends primarily on the training data quality and model architecture. This study employed the entropy-based-masking indicator kriging (IK-EBM) to segment 3D Berea sandstone images as training datasets. The comparison between IK-EBM and manual segmentation using a 3D synthetic sphere pack, which had a known ground truth, showed that IK-EBM had higher accuracy on partial volume segmentation. We then trained and tested the UNet++ model, a state-of-the-art supervised encoder-decoder model, for binary (i.e., void and solid) and four-class segmentation. We compared the UNet++ with the commonly used U-Net and wide U-Net models and showed that the UNet++ had the best performance in terms of pixel-wise and physics-based evaluation metrics. Specifically, boundary-scaled accuracy demonstrated that the UNet++ architecture outperformed the regular U-Net architecture in the segmentation of pixels near boundaries and small targets, which were subjected to the PVB effect. Feature map visualization illustrated that the UNet++ bridged the semantic gaps between the feature maps extracted at different depths of the network, thereby enabling faster convergence and more accurate extraction of fine-scale features. The developed workflow significantly enhances the performance of supervised encoder-decoder models in partial volume segmentation, which has extensive applications in fundamental studies of subsurface energy, water, and environmental systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
34秒前
狂野的含烟完成签到 ,获得积分10
38秒前
39秒前
QCB完成签到 ,获得积分10
40秒前
浩二发布了新的文献求助10
40秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
lsl完成签到 ,获得积分10
1分钟前
gwbk完成签到,获得积分10
1分钟前
vbnn完成签到 ,获得积分10
2分钟前
自然亦凝完成签到,获得积分10
2分钟前
馆长完成签到,获得积分0
2分钟前
crane完成签到,获得积分10
2分钟前
ShishanXue完成签到 ,获得积分10
2分钟前
睿睿斌斌完成签到,获得积分10
3分钟前
今后应助耳东陈采纳,获得30
3分钟前
皮皮完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
耳东陈发布了新的文献求助30
3分钟前
耳东陈完成签到,获得积分10
4分钟前
lyoer发布了新的文献求助10
4分钟前
空2完成签到 ,获得积分0
4分钟前
Bryan_Wang完成签到,获得积分10
5分钟前
华仔应助Bryan_Wang采纳,获得10
5分钟前
Esperanza完成签到,获得积分10
5分钟前
方白秋完成签到,获得积分0
5分钟前
juan完成签到 ,获得积分0
7分钟前
bji完成签到,获得积分10
8分钟前
专注寻菱完成签到,获得积分10
8分钟前
直率的笑翠完成签到 ,获得积分10
9分钟前
赵文杰完成签到,获得积分10
9分钟前
老迟到的友桃完成签到 ,获得积分10
10分钟前
精明寒松完成签到 ,获得积分10
10分钟前
10分钟前
10分钟前
量子星尘发布了新的文献求助10
10分钟前
大医仁心完成签到 ,获得积分10
10分钟前
11分钟前
Double发布了新的文献求助10
11分钟前
四天垂完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438599
求助须知:如何正确求助?哪些是违规求助? 4549796
关于积分的说明 14220965
捐赠科研通 4470608
什么是DOI,文献DOI怎么找? 2449977
邀请新用户注册赠送积分活动 1440935
关于科研通互助平台的介绍 1417419