Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM

分割 地质学 计算机科学 深度学习 基本事实 人工智能 像素 图像分割 模式识别(心理学) 计算机视觉
作者
Hongsheng Wang,Laura E. Dalton,Ming Fan,Ruichang Guo,James E. McClure,Dustin Crandall,Cheng Chen
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:215: 110596-110596 被引量:29
标识
DOI:10.1016/j.petrol.2022.110596
摘要

Three-dimensional (3D) X-ray micro-computed tomography (μCT) has been widely used in petroleum engineering because it can provide detailed pore structural information for a reservoir rock, which can be imported into a pore-scale numerical model to simulate the transport and distribution of multiple fluids in the pore space. The partial volume blurring (PVB) problem is a major challenge in segmenting raw μCT images of rock samples, which impacts boundaries and small targets near the resolution limit. We developed a deep-learning (DL)-based workflow for accurate and fast partial volume segmentation. The DL model's performance depends primarily on the training data quality and model architecture. This study employed the entropy-based-masking indicator kriging (IK-EBM) to segment 3D Berea sandstone images as training datasets. The comparison between IK-EBM and manual segmentation using a 3D synthetic sphere pack, which had a known ground truth, showed that IK-EBM had higher accuracy on partial volume segmentation. We then trained and tested the UNet++ model, a state-of-the-art supervised encoder-decoder model, for binary (i.e., void and solid) and four-class segmentation. We compared the UNet++ with the commonly used U-Net and wide U-Net models and showed that the UNet++ had the best performance in terms of pixel-wise and physics-based evaluation metrics. Specifically, boundary-scaled accuracy demonstrated that the UNet++ architecture outperformed the regular U-Net architecture in the segmentation of pixels near boundaries and small targets, which were subjected to the PVB effect. Feature map visualization illustrated that the UNet++ bridged the semantic gaps between the feature maps extracted at different depths of the network, thereby enabling faster convergence and more accurate extraction of fine-scale features. The developed workflow significantly enhances the performance of supervised encoder-decoder models in partial volume segmentation, which has extensive applications in fundamental studies of subsurface energy, water, and environmental systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠魔镜发布了新的文献求助10
1秒前
PG发布了新的文献求助10
3秒前
zhonglv7应助值雨采纳,获得10
4秒前
seun发布了新的文献求助10
4秒前
科研通AI6应助yyy采纳,获得10
5秒前
内向的羊青完成签到,获得积分10
5秒前
6秒前
CodeCraft应助zhouleiwang采纳,获得10
7秒前
8秒前
8秒前
忧伤的宝马完成签到,获得积分10
9秒前
LJJ发布了新的文献求助10
9秒前
和谐的芷天完成签到,获得积分10
10秒前
xionggege完成签到,获得积分10
11秒前
13秒前
值雨完成签到,获得积分10
14秒前
星辰大海应助管难破采纳,获得10
15秒前
WuYiHHH完成签到,获得积分10
15秒前
王仁完成签到,获得积分10
15秒前
16秒前
18秒前
18秒前
18秒前
JamesPei应助迅速如柏采纳,获得10
21秒前
21秒前
伊叶之丘完成签到 ,获得积分10
22秒前
小鱼儿发布了新的文献求助10
22秒前
PG完成签到,获得积分20
23秒前
23秒前
科研笑川发布了新的文献求助10
23秒前
seun完成签到,获得积分10
24秒前
24秒前
健壮不斜完成签到 ,获得积分10
24秒前
aa完成签到,获得积分10
26秒前
华仔应助zhu采纳,获得30
26秒前
zhuang完成签到,获得积分10
26秒前
27秒前
小马甲应助科研笑川采纳,获得10
29秒前
吕佳蔚发布了新的文献求助30
29秒前
ahua完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560070
求助须知:如何正确求助?哪些是违规求助? 4645240
关于积分的说明 14674548
捐赠科研通 4586369
什么是DOI,文献DOI怎么找? 2516380
邀请新用户注册赠送积分活动 1490038
关于科研通互助平台的介绍 1460866