亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM

分割 地质学 计算机科学 深度学习 基本事实 人工智能 像素 图像分割 模式识别(心理学) 计算机视觉
作者
Hongsheng Wang,Laura E. Dalton,Ming Fan,Ruichang Guo,James E. McClure,Dustin Crandall,Cheng Chen
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:215: 110596-110596 被引量:29
标识
DOI:10.1016/j.petrol.2022.110596
摘要

Three-dimensional (3D) X-ray micro-computed tomography (μCT) has been widely used in petroleum engineering because it can provide detailed pore structural information for a reservoir rock, which can be imported into a pore-scale numerical model to simulate the transport and distribution of multiple fluids in the pore space. The partial volume blurring (PVB) problem is a major challenge in segmenting raw μCT images of rock samples, which impacts boundaries and small targets near the resolution limit. We developed a deep-learning (DL)-based workflow for accurate and fast partial volume segmentation. The DL model's performance depends primarily on the training data quality and model architecture. This study employed the entropy-based-masking indicator kriging (IK-EBM) to segment 3D Berea sandstone images as training datasets. The comparison between IK-EBM and manual segmentation using a 3D synthetic sphere pack, which had a known ground truth, showed that IK-EBM had higher accuracy on partial volume segmentation. We then trained and tested the UNet++ model, a state-of-the-art supervised encoder-decoder model, for binary (i.e., void and solid) and four-class segmentation. We compared the UNet++ with the commonly used U-Net and wide U-Net models and showed that the UNet++ had the best performance in terms of pixel-wise and physics-based evaluation metrics. Specifically, boundary-scaled accuracy demonstrated that the UNet++ architecture outperformed the regular U-Net architecture in the segmentation of pixels near boundaries and small targets, which were subjected to the PVB effect. Feature map visualization illustrated that the UNet++ bridged the semantic gaps between the feature maps extracted at different depths of the network, thereby enabling faster convergence and more accurate extraction of fine-scale features. The developed workflow significantly enhances the performance of supervised encoder-decoder models in partial volume segmentation, which has extensive applications in fundamental studies of subsurface energy, water, and environmental systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
xiaoguoxiaoguo完成签到,获得积分10
3秒前
绿柏完成签到,获得积分10
7秒前
13秒前
超级灰狼完成签到 ,获得积分10
15秒前
17秒前
741发布了新的文献求助10
18秒前
Qiancheni发布了新的文献求助10
23秒前
23秒前
欧欧完成签到 ,获得积分10
24秒前
29秒前
Qiu发布了新的文献求助30
29秒前
ztayx完成签到 ,获得积分10
31秒前
32秒前
暗光影完成签到,获得积分10
37秒前
慈祥的蛋挞完成签到,获得积分10
37秒前
40秒前
伊力扎提发布了新的文献求助10
45秒前
温暖的芷烟完成签到,获得积分10
49秒前
伊力扎提完成签到,获得积分10
50秒前
充电宝应助理学猫采纳,获得10
51秒前
娄心昊应助JianDan采纳,获得30
53秒前
leesc94完成签到,获得积分10
59秒前
浮游应助jh采纳,获得10
59秒前
Qiancheni完成签到,获得积分10
1分钟前
1分钟前
momo完成签到,获得积分10
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
科研通AI6应助义气的水蓝采纳,获得30
1分钟前
超级桂花糕完成签到 ,获得积分10
1分钟前
情怀应助anuo采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
油柑美式发布了新的文献求助10
1分钟前
1分钟前
油柑美式发布了新的文献求助10
1分钟前
油柑美式发布了新的文献求助10
1分钟前
油柑美式发布了新的文献求助10
1分钟前
油柑美式发布了新的文献求助10
1分钟前
油柑美式发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498151
求助须知:如何正确求助?哪些是违规求助? 4595488
关于积分的说明 14449162
捐赠科研通 4528187
什么是DOI,文献DOI怎么找? 2481401
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438296