已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM

分割 地质学 计算机科学 深度学习 基本事实 人工智能 像素 图像分割 模式识别(心理学) 计算机视觉
作者
Hongsheng Wang,Laura E. Dalton,Ming Fan,Ruichang Guo,James E. McClure,Dustin Crandall,Cheng Chen
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier BV]
卷期号:215: 110596-110596 被引量:29
标识
DOI:10.1016/j.petrol.2022.110596
摘要

Three-dimensional (3D) X-ray micro-computed tomography (μCT) has been widely used in petroleum engineering because it can provide detailed pore structural information for a reservoir rock, which can be imported into a pore-scale numerical model to simulate the transport and distribution of multiple fluids in the pore space. The partial volume blurring (PVB) problem is a major challenge in segmenting raw μCT images of rock samples, which impacts boundaries and small targets near the resolution limit. We developed a deep-learning (DL)-based workflow for accurate and fast partial volume segmentation. The DL model's performance depends primarily on the training data quality and model architecture. This study employed the entropy-based-masking indicator kriging (IK-EBM) to segment 3D Berea sandstone images as training datasets. The comparison between IK-EBM and manual segmentation using a 3D synthetic sphere pack, which had a known ground truth, showed that IK-EBM had higher accuracy on partial volume segmentation. We then trained and tested the UNet++ model, a state-of-the-art supervised encoder-decoder model, for binary (i.e., void and solid) and four-class segmentation. We compared the UNet++ with the commonly used U-Net and wide U-Net models and showed that the UNet++ had the best performance in terms of pixel-wise and physics-based evaluation metrics. Specifically, boundary-scaled accuracy demonstrated that the UNet++ architecture outperformed the regular U-Net architecture in the segmentation of pixels near boundaries and small targets, which were subjected to the PVB effect. Feature map visualization illustrated that the UNet++ bridged the semantic gaps between the feature maps extracted at different depths of the network, thereby enabling faster convergence and more accurate extraction of fine-scale features. The developed workflow significantly enhances the performance of supervised encoder-decoder models in partial volume segmentation, which has extensive applications in fundamental studies of subsurface energy, water, and environmental systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wwwyyy完成签到 ,获得积分10
2秒前
A.y.w完成签到,获得积分10
4秒前
5秒前
Criminology34完成签到,获得积分0
5秒前
7秒前
xionggege完成签到,获得积分10
8秒前
嘎嘎嘎嘎完成签到,获得积分10
8秒前
YYy发布了新的文献求助10
11秒前
纯真沛儿完成签到,获得积分10
11秒前
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
浮游应助嘎嘎嘎嘎采纳,获得30
15秒前
Dasiliy发布了新的文献求助10
18秒前
25秒前
甜甜的以筠完成签到 ,获得积分10
26秒前
爆米花应助无私的香菇采纳,获得10
27秒前
柿饼完成签到,获得积分10
29秒前
30秒前
Ava应助正摩六堂采纳,获得10
30秒前
天天快乐应助llt采纳,获得10
33秒前
34秒前
34秒前
大龙完成签到 ,获得积分10
38秒前
鞋子亮发布了新的文献求助10
38秒前
wanci应助鞋子亮采纳,获得10
44秒前
雪生在无人荒野完成签到,获得积分10
44秒前
顾矜应助wuuw采纳,获得10
45秒前
48秒前
小二郎应助知来者采纳,获得10
50秒前
52秒前
53秒前
nalan完成签到,获得积分10
54秒前
wuuw发布了新的文献求助10
58秒前
58秒前
稳重岩完成签到 ,获得积分10
1分钟前
Liqi完成签到,获得积分20
1分钟前
Lucas应助欢呼的访枫采纳,获得10
1分钟前
正摩六堂发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899884
求助须知:如何正确求助?哪些是违规求助? 4180149
关于积分的说明 12976325
捐赠科研通 3944459
什么是DOI,文献DOI怎么找? 2163750
邀请新用户注册赠送积分活动 1181994
关于科研通互助平台的介绍 1087841