亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM

分割 地质学 计算机科学 深度学习 基本事实 人工智能 像素 图像分割 模式识别(心理学) 计算机视觉
作者
Hongsheng Wang,Laura E. Dalton,Ming Fan,Ruichang Guo,James E. McClure,Dustin Crandall,Cheng Chen
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:215: 110596-110596 被引量:29
标识
DOI:10.1016/j.petrol.2022.110596
摘要

Three-dimensional (3D) X-ray micro-computed tomography (μCT) has been widely used in petroleum engineering because it can provide detailed pore structural information for a reservoir rock, which can be imported into a pore-scale numerical model to simulate the transport and distribution of multiple fluids in the pore space. The partial volume blurring (PVB) problem is a major challenge in segmenting raw μCT images of rock samples, which impacts boundaries and small targets near the resolution limit. We developed a deep-learning (DL)-based workflow for accurate and fast partial volume segmentation. The DL model's performance depends primarily on the training data quality and model architecture. This study employed the entropy-based-masking indicator kriging (IK-EBM) to segment 3D Berea sandstone images as training datasets. The comparison between IK-EBM and manual segmentation using a 3D synthetic sphere pack, which had a known ground truth, showed that IK-EBM had higher accuracy on partial volume segmentation. We then trained and tested the UNet++ model, a state-of-the-art supervised encoder-decoder model, for binary (i.e., void and solid) and four-class segmentation. We compared the UNet++ with the commonly used U-Net and wide U-Net models and showed that the UNet++ had the best performance in terms of pixel-wise and physics-based evaluation metrics. Specifically, boundary-scaled accuracy demonstrated that the UNet++ architecture outperformed the regular U-Net architecture in the segmentation of pixels near boundaries and small targets, which were subjected to the PVB effect. Feature map visualization illustrated that the UNet++ bridged the semantic gaps between the feature maps extracted at different depths of the network, thereby enabling faster convergence and more accurate extraction of fine-scale features. The developed workflow significantly enhances the performance of supervised encoder-decoder models in partial volume segmentation, which has extensive applications in fundamental studies of subsurface energy, water, and environmental systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mosisa发布了新的文献求助10
6秒前
11秒前
Criminology34完成签到,获得积分0
21秒前
万能图书馆应助初初见你采纳,获得10
22秒前
NexusExplorer应助ccqy采纳,获得10
32秒前
39秒前
39秒前
魔幻诗兰完成签到,获得积分10
39秒前
笑点低的斑马完成签到,获得积分10
41秒前
ccqy发布了新的文献求助10
44秒前
45秒前
51秒前
56秒前
研友_Zb17ln发布了新的文献求助10
57秒前
今后应助小诗采纳,获得10
58秒前
59秒前
初初见你发布了新的文献求助10
1分钟前
yannis完成签到,获得积分10
1分钟前
1分钟前
Viiigo发布了新的文献求助30
1分钟前
小诗发布了新的文献求助10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
liz_应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
顾矜应助ccqy采纳,获得10
1分钟前
GingerF给For的求助进行了留言
1分钟前
1分钟前
1分钟前
在水一方完成签到 ,获得积分10
1分钟前
Akim应助mosisa采纳,获得10
1分钟前
优雅的若雁完成签到,获得积分10
1分钟前
赘婿应助超级的路人采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
123发布了新的文献求助10
2分钟前
2分钟前
lhn发布了新的文献求助10
2分钟前
Zert发布了新的文献求助10
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345937
求助须知:如何正确求助?哪些是违规求助? 4480696
关于积分的说明 13946672
捐赠科研通 4378307
什么是DOI,文献DOI怎么找? 2405778
邀请新用户注册赠送积分活动 1398350
关于科研通互助平台的介绍 1370859