Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM

分割 地质学 计算机科学 深度学习 基本事实 人工智能 像素 图像分割 模式识别(心理学) 计算机视觉
作者
Hongsheng Wang,Laura E. Dalton,Ming Fan,Ruichang Guo,James E. McClure,Dustin Crandall,Cheng Chen
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier BV]
卷期号:215: 110596-110596 被引量:29
标识
DOI:10.1016/j.petrol.2022.110596
摘要

Three-dimensional (3D) X-ray micro-computed tomography (μCT) has been widely used in petroleum engineering because it can provide detailed pore structural information for a reservoir rock, which can be imported into a pore-scale numerical model to simulate the transport and distribution of multiple fluids in the pore space. The partial volume blurring (PVB) problem is a major challenge in segmenting raw μCT images of rock samples, which impacts boundaries and small targets near the resolution limit. We developed a deep-learning (DL)-based workflow for accurate and fast partial volume segmentation. The DL model's performance depends primarily on the training data quality and model architecture. This study employed the entropy-based-masking indicator kriging (IK-EBM) to segment 3D Berea sandstone images as training datasets. The comparison between IK-EBM and manual segmentation using a 3D synthetic sphere pack, which had a known ground truth, showed that IK-EBM had higher accuracy on partial volume segmentation. We then trained and tested the UNet++ model, a state-of-the-art supervised encoder-decoder model, for binary (i.e., void and solid) and four-class segmentation. We compared the UNet++ with the commonly used U-Net and wide U-Net models and showed that the UNet++ had the best performance in terms of pixel-wise and physics-based evaluation metrics. Specifically, boundary-scaled accuracy demonstrated that the UNet++ architecture outperformed the regular U-Net architecture in the segmentation of pixels near boundaries and small targets, which were subjected to the PVB effect. Feature map visualization illustrated that the UNet++ bridged the semantic gaps between the feature maps extracted at different depths of the network, thereby enabling faster convergence and more accurate extraction of fine-scale features. The developed workflow significantly enhances the performance of supervised encoder-decoder models in partial volume segmentation, which has extensive applications in fundamental studies of subsurface energy, water, and environmental systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娟娟完成签到 ,获得积分10
1秒前
gladuhere完成签到 ,获得积分10
2秒前
王宣龙发布了新的文献求助40
2秒前
研友_VZG7GZ应助踏实的12采纳,获得10
6秒前
JG完成签到 ,获得积分10
7秒前
Jaden完成签到,获得积分10
9秒前
ZZzz完成签到 ,获得积分10
10秒前
博弈完成签到 ,获得积分10
16秒前
18秒前
ilk666完成签到,获得积分10
21秒前
大气夜山完成签到 ,获得积分10
22秒前
caohuijun发布了新的文献求助10
22秒前
逢场作戱__完成签到 ,获得积分10
22秒前
努力学习ing完成签到 ,获得积分10
24秒前
WangJL完成签到 ,获得积分10
25秒前
温暖完成签到 ,获得积分10
26秒前
HCT完成签到,获得积分10
27秒前
丽莉完成签到,获得积分20
28秒前
小巧的语儿完成签到 ,获得积分10
30秒前
蒸馏水完成签到,获得积分10
31秒前
tong完成签到,获得积分10
33秒前
leaolf完成签到,获得积分0
35秒前
许晴完成签到 ,获得积分10
37秒前
笑点低的项链完成签到 ,获得积分10
40秒前
Dong完成签到 ,获得积分10
40秒前
猕猴桃完成签到 ,获得积分10
42秒前
兔兔完成签到 ,获得积分10
45秒前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
脑洞疼应助Tinadai123456采纳,获得10
1分钟前
豆豆完成签到,获得积分10
1分钟前
bill完成签到,获得积分10
1分钟前
妇产科医生完成签到 ,获得积分10
1分钟前
Jayzie完成签到 ,获得积分10
1分钟前
HLT完成签到 ,获得积分10
1分钟前
1分钟前
怕孤单的羊完成签到 ,获得积分10
1分钟前
xfy完成签到,获得积分10
1分钟前
Tinadai123456发布了新的文献求助10
1分钟前
00完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570320
求助须知:如何正确求助?哪些是违规求助? 3991993
关于积分的说明 12356573
捐赠科研通 3664572
什么是DOI,文献DOI怎么找? 2019606
邀请新用户注册赠送积分活动 1054071
科研通“疑难数据库(出版商)”最低求助积分说明 941622