亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM

分割 地质学 计算机科学 深度学习 基本事实 人工智能 像素 图像分割 模式识别(心理学) 计算机视觉
作者
Hongsheng Wang,Laura E. Dalton,Ming Fan,Ruichang Guo,James E. McClure,Dustin Crandall,Cheng Chen
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:215: 110596-110596 被引量:29
标识
DOI:10.1016/j.petrol.2022.110596
摘要

Three-dimensional (3D) X-ray micro-computed tomography (μCT) has been widely used in petroleum engineering because it can provide detailed pore structural information for a reservoir rock, which can be imported into a pore-scale numerical model to simulate the transport and distribution of multiple fluids in the pore space. The partial volume blurring (PVB) problem is a major challenge in segmenting raw μCT images of rock samples, which impacts boundaries and small targets near the resolution limit. We developed a deep-learning (DL)-based workflow for accurate and fast partial volume segmentation. The DL model's performance depends primarily on the training data quality and model architecture. This study employed the entropy-based-masking indicator kriging (IK-EBM) to segment 3D Berea sandstone images as training datasets. The comparison between IK-EBM and manual segmentation using a 3D synthetic sphere pack, which had a known ground truth, showed that IK-EBM had higher accuracy on partial volume segmentation. We then trained and tested the UNet++ model, a state-of-the-art supervised encoder-decoder model, for binary (i.e., void and solid) and four-class segmentation. We compared the UNet++ with the commonly used U-Net and wide U-Net models and showed that the UNet++ had the best performance in terms of pixel-wise and physics-based evaluation metrics. Specifically, boundary-scaled accuracy demonstrated that the UNet++ architecture outperformed the regular U-Net architecture in the segmentation of pixels near boundaries and small targets, which were subjected to the PVB effect. Feature map visualization illustrated that the UNet++ bridged the semantic gaps between the feature maps extracted at different depths of the network, thereby enabling faster convergence and more accurate extraction of fine-scale features. The developed workflow significantly enhances the performance of supervised encoder-decoder models in partial volume segmentation, which has extensive applications in fundamental studies of subsurface energy, water, and environmental systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
电灯胆完成签到 ,获得积分10
2秒前
HY完成签到 ,获得积分10
7秒前
hhq完成签到 ,获得积分10
12秒前
jjj完成签到 ,获得积分10
28秒前
jjj关注了科研通微信公众号
36秒前
HYH发布了新的文献求助10
40秒前
44秒前
44秒前
xinchi发布了新的文献求助30
49秒前
小泽发布了新的文献求助10
53秒前
1分钟前
Owen应助xinchi采纳,获得10
1分钟前
小草发布了新的文献求助10
1分钟前
xinchi完成签到,获得积分10
1分钟前
Jasper应助小泽采纳,获得10
1分钟前
hhhhhh应助annathd采纳,获得10
1分钟前
清飏举报ni求助涉嫌违规
1分钟前
桐桐应助KSung采纳,获得10
1分钟前
1分钟前
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
wy.he应助陶醉的烤鸡采纳,获得10
1分钟前
dlfg完成签到,获得积分10
1分钟前
2分钟前
kd1412完成签到 ,获得积分10
2分钟前
KSung发布了新的文献求助10
2分钟前
华仔应助XX采纳,获得10
2分钟前
清飏举报vivianzzz求助涉嫌违规
2分钟前
2分钟前
XX完成签到,获得积分20
2分钟前
2021完成签到 ,获得积分10
2分钟前
XX发布了新的文献求助10
2分钟前
情怀应助ceeray23采纳,获得20
2分钟前
Elthrai完成签到 ,获得积分10
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
小马完成签到,获得积分10
3分钟前
小马发布了新的文献求助10
3分钟前
科目三应助XX采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634707
求助须知:如何正确求助?哪些是违规求助? 4731892
关于积分的说明 14988959
捐赠科研通 4792423
什么是DOI,文献DOI怎么找? 2559546
邀请新用户注册赠送积分活动 1519820
关于科研通互助平台的介绍 1479929