Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM

分割 地质学 计算机科学 深度学习 基本事实 人工智能 像素 图像分割 模式识别(心理学) 计算机视觉
作者
Hongsheng Wang,Laura E. Dalton,Ming Fan,Ruichang Guo,James E. McClure,Dustin Crandall,Cheng Chen
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:215: 110596-110596 被引量:29
标识
DOI:10.1016/j.petrol.2022.110596
摘要

Three-dimensional (3D) X-ray micro-computed tomography (μCT) has been widely used in petroleum engineering because it can provide detailed pore structural information for a reservoir rock, which can be imported into a pore-scale numerical model to simulate the transport and distribution of multiple fluids in the pore space. The partial volume blurring (PVB) problem is a major challenge in segmenting raw μCT images of rock samples, which impacts boundaries and small targets near the resolution limit. We developed a deep-learning (DL)-based workflow for accurate and fast partial volume segmentation. The DL model's performance depends primarily on the training data quality and model architecture. This study employed the entropy-based-masking indicator kriging (IK-EBM) to segment 3D Berea sandstone images as training datasets. The comparison between IK-EBM and manual segmentation using a 3D synthetic sphere pack, which had a known ground truth, showed that IK-EBM had higher accuracy on partial volume segmentation. We then trained and tested the UNet++ model, a state-of-the-art supervised encoder-decoder model, for binary (i.e., void and solid) and four-class segmentation. We compared the UNet++ with the commonly used U-Net and wide U-Net models and showed that the UNet++ had the best performance in terms of pixel-wise and physics-based evaluation metrics. Specifically, boundary-scaled accuracy demonstrated that the UNet++ architecture outperformed the regular U-Net architecture in the segmentation of pixels near boundaries and small targets, which were subjected to the PVB effect. Feature map visualization illustrated that the UNet++ bridged the semantic gaps between the feature maps extracted at different depths of the network, thereby enabling faster convergence and more accurate extraction of fine-scale features. The developed workflow significantly enhances the performance of supervised encoder-decoder models in partial volume segmentation, which has extensive applications in fundamental studies of subsurface energy, water, and environmental systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助Paradox采纳,获得10
1秒前
脑洞疼应助Paradox采纳,获得10
1秒前
1秒前
Owen应助Paradox采纳,获得10
1秒前
汉堡包应助Paradox采纳,获得10
1秒前
JamesPei应助Paradox采纳,获得10
1秒前
慕青应助Paradox采纳,获得10
1秒前
Jasper应助Paradox采纳,获得10
1秒前
深情安青应助Paradox采纳,获得10
1秒前
上官若男应助Paradox采纳,获得10
1秒前
科研通AI6应助自信孤风采纳,获得10
2秒前
尤里有气发布了新的文献求助10
3秒前
张杰发布了新的文献求助10
3秒前
3秒前
光亮静槐发布了新的文献求助10
3秒前
今后应助distinct采纳,获得10
5秒前
WT关闭了WT文献求助
5秒前
NexusExplorer应助李钧鹏采纳,获得10
6秒前
李健应助义气的采文采纳,获得10
7秒前
张兰兰发布了新的文献求助10
8秒前
yfn发布了新的文献求助10
9秒前
10秒前
11秒前
科研通AI6应助甜美的成败采纳,获得10
12秒前
万能图书馆应助zzznznnn采纳,获得10
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
聂紫寒完成签到,获得积分10
15秒前
15秒前
达落完成签到,获得积分10
15秒前
16秒前
薇子发布了新的文献求助10
16秒前
zhao完成签到,获得积分10
16秒前
keyan123完成签到,获得积分10
16秒前
miemie完成签到,获得积分10
18秒前
稳重的不正完成签到,获得积分10
18秒前
1111111发布了新的文献求助10
18秒前
青乐完成签到 ,获得积分10
18秒前
欢呼的天与完成签到,获得积分20
19秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583326
求助须知:如何正确求助?哪些是违规求助? 4667155
关于积分的说明 14765758
捐赠科研通 4609337
什么是DOI,文献DOI怎么找? 2529123
邀请新用户注册赠送积分活动 1498393
关于科研通互助平台的介绍 1467043