Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM

分割 地质学 计算机科学 深度学习 基本事实 人工智能 像素 图像分割 模式识别(心理学) 计算机视觉
作者
Hongsheng Wang,Laura E. Dalton,Ming Fan,Ruichang Guo,James E. McClure,Dustin Crandall,Cheng Chen
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:215: 110596-110596 被引量:29
标识
DOI:10.1016/j.petrol.2022.110596
摘要

Three-dimensional (3D) X-ray micro-computed tomography (μCT) has been widely used in petroleum engineering because it can provide detailed pore structural information for a reservoir rock, which can be imported into a pore-scale numerical model to simulate the transport and distribution of multiple fluids in the pore space. The partial volume blurring (PVB) problem is a major challenge in segmenting raw μCT images of rock samples, which impacts boundaries and small targets near the resolution limit. We developed a deep-learning (DL)-based workflow for accurate and fast partial volume segmentation. The DL model's performance depends primarily on the training data quality and model architecture. This study employed the entropy-based-masking indicator kriging (IK-EBM) to segment 3D Berea sandstone images as training datasets. The comparison between IK-EBM and manual segmentation using a 3D synthetic sphere pack, which had a known ground truth, showed that IK-EBM had higher accuracy on partial volume segmentation. We then trained and tested the UNet++ model, a state-of-the-art supervised encoder-decoder model, for binary (i.e., void and solid) and four-class segmentation. We compared the UNet++ with the commonly used U-Net and wide U-Net models and showed that the UNet++ had the best performance in terms of pixel-wise and physics-based evaluation metrics. Specifically, boundary-scaled accuracy demonstrated that the UNet++ architecture outperformed the regular U-Net architecture in the segmentation of pixels near boundaries and small targets, which were subjected to the PVB effect. Feature map visualization illustrated that the UNet++ bridged the semantic gaps between the feature maps extracted at different depths of the network, thereby enabling faster convergence and more accurate extraction of fine-scale features. The developed workflow significantly enhances the performance of supervised encoder-decoder models in partial volume segmentation, which has extensive applications in fundamental studies of subsurface energy, water, and environmental systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助专注世界采纳,获得10
2秒前
2秒前
小大巫完成签到,获得积分10
2秒前
5秒前
6秒前
锅包肉完成签到,获得积分10
6秒前
SCI随缘完成签到,获得积分10
7秒前
天天快乐应助犹豫的书蝶采纳,获得10
8秒前
8秒前
lemon发布了新的文献求助10
11秒前
11秒前
123完成签到 ,获得积分10
12秒前
bkagyin应助qiu采纳,获得10
13秒前
能干的烧鹅完成签到,获得积分10
13秒前
13秒前
学习星发布了新的文献求助10
13秒前
13秒前
郑思榆完成签到 ,获得积分10
14秒前
Orange应助超级灰狼采纳,获得10
15秒前
ADDDGDD发布了新的文献求助10
15秒前
16秒前
惊奇先生1发布了新的文献求助10
18秒前
慕青应助lemon采纳,获得30
18秒前
GRH发布了新的文献求助10
19秒前
23完成签到,获得积分10
19秒前
Lilla辣辣完成签到 ,获得积分10
21秒前
大模型应助上好采纳,获得10
22秒前
smz完成签到 ,获得积分10
25秒前
打打应助科研通管家采纳,获得10
26秒前
iNk应助科研通管家采纳,获得20
26秒前
FashionBoy应助科研通管家采纳,获得10
26秒前
我是老大应助科研通管家采纳,获得10
26秒前
领导范儿应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
璇璇完成签到 ,获得积分10
28秒前
科目三应助阳光秋莲采纳,获得10
29秒前
惊奇先生1完成签到,获得积分10
29秒前
ADDDGDD完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135007
求助须知:如何正确求助?哪些是违规求助? 2785964
关于积分的说明 7774560
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298183
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825