FOD-Net: A deep learning method for fiber orientation distribution angular super resolution

人类连接体项目 连接体 纤维束成像 计算机科学 磁共振弥散成像 人工智能 方向(向量空间) 角度分辨率(图形绘制) 计算机视觉 模式识别(心理学) 磁共振成像 神经科学 功能连接 数学 医学 放射科 心理学 组合数学 几何学
作者
Rui Zeng,Jinglei Lv,He Wang,Luping Zhou,Michael Barnett,Fernando Calamante,Chenyu Wang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:79: 102431-102431 被引量:16
标识
DOI:10.1016/j.media.2022.102431
摘要

Mapping the human connectome using fiber-tracking permits the study of brain connectivity and yields new insights into neuroscience. However, reliable connectome reconstruction using diffusion magnetic resonance imaging (dMRI) data acquired by widely available clinical protocols remains challenging, thus limiting the connectome/tractography clinical applications. Here we develop fiber orientation distribution (FOD) network (FOD-Net), a deep-learning-based framework for FOD angular super-resolution. Our method enhances the angular resolution of FOD images computed from common clinical-quality dMRI data, to obtain FODs with quality comparable to those produced from advanced research scanners. Super-resolved FOD images enable superior tractography and structural connectome reconstruction from clinical protocols. The method was trained and tested with high-quality data from the Human Connectome Project (HCP) and further validated with a local clinical 3.0T scanner as well as with another public available multicenter-multiscanner dataset. Using this method, we improve the angular resolution of FOD images acquired with typical single-shell low-angular-resolution dMRI data (e.g., 32 directions, b=1000s/mm2) to approximate the quality of FODs derived from time-consuming, multi-shell high-angular-resolution dMRI research protocols. We also demonstrate tractography improvement, removing spurious connections and bridging missing connections. We further demonstrate that connectomes reconstructed by super-resolved FODs achieve comparable results to those obtained with more advanced dMRI acquisition protocols, on both HCP and clinical 3.0T data. Advances in deep-learning approaches used in FOD-Net facilitate the generation of high quality tractography/connectome analysis from existing clinical MRI environments. Our code is freely available at https://github.com/ruizengalways/FOD-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
瘦瘦的老三完成签到,获得积分10
1秒前
GPTea应助sj采纳,获得20
1秒前
Linda完成签到 ,获得积分10
2秒前
3秒前
4秒前
莉莉发布了新的文献求助10
6秒前
充电宝应助奋斗的暖阳采纳,获得20
6秒前
漂亮小姨爱上我完成签到,获得积分10
7秒前
Ann完成签到,获得积分10
7秒前
贰壹完成签到 ,获得积分10
9秒前
欢喜发卡发布了新的文献求助10
9秒前
11秒前
11秒前
斯文败类应助西柚采纳,获得10
11秒前
kumo完成签到,获得积分10
11秒前
庾稚晴完成签到,获得积分10
12秒前
司空老头完成签到,获得积分10
14秒前
xyhua925发布了新的文献求助10
15秒前
今后应助星光采纳,获得10
17秒前
菜泡饭发布了新的文献求助10
17秒前
莉莉完成签到,获得积分10
17秒前
18秒前
19秒前
浮游应助活力友容采纳,获得10
19秒前
浮游应助鱼梓采纳,获得10
20秒前
李健的粉丝团团长应助Wwt采纳,获得10
21秒前
美满向薇发布了新的文献求助10
21秒前
Jasper应助Sarah采纳,获得10
25秒前
25秒前
25秒前
CipherSage应助xyhua925采纳,获得10
26秒前
28秒前
星光发布了新的文献求助10
29秒前
轻松新之发布了新的文献求助10
30秒前
共享精神应助ZDM6094采纳,获得10
32秒前
哈哈哈哈哈哈完成签到,获得积分10
33秒前
chiho发布了新的文献求助10
34秒前
34秒前
可爱的函函应助Bruial采纳,获得10
35秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225595
求助须知:如何正确求助?哪些是违规求助? 4397219
关于积分的说明 13686133
捐赠科研通 4261786
什么是DOI,文献DOI怎么找? 2338712
邀请新用户注册赠送积分活动 1336095
关于科研通互助平台的介绍 1292013