FOD-Net: A deep learning method for fiber orientation distribution angular super resolution

人类连接体项目 连接体 纤维束成像 计算机科学 磁共振弥散成像 人工智能 方向(向量空间) 角度分辨率(图形绘制) 计算机视觉 模式识别(心理学) 磁共振成像 神经科学 功能连接 数学 医学 放射科 心理学 几何学 组合数学
作者
Rui Zeng,Jinglei Lv,He Wang,Luping Zhou,Michael Barnett,Fernando Calamante,Chenyu Wang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:79: 102431-102431 被引量:16
标识
DOI:10.1016/j.media.2022.102431
摘要

Mapping the human connectome using fiber-tracking permits the study of brain connectivity and yields new insights into neuroscience. However, reliable connectome reconstruction using diffusion magnetic resonance imaging (dMRI) data acquired by widely available clinical protocols remains challenging, thus limiting the connectome/tractography clinical applications. Here we develop fiber orientation distribution (FOD) network (FOD-Net), a deep-learning-based framework for FOD angular super-resolution. Our method enhances the angular resolution of FOD images computed from common clinical-quality dMRI data, to obtain FODs with quality comparable to those produced from advanced research scanners. Super-resolved FOD images enable superior tractography and structural connectome reconstruction from clinical protocols. The method was trained and tested with high-quality data from the Human Connectome Project (HCP) and further validated with a local clinical 3.0T scanner as well as with another public available multicenter-multiscanner dataset. Using this method, we improve the angular resolution of FOD images acquired with typical single-shell low-angular-resolution dMRI data (e.g., 32 directions, b=1000s/mm2) to approximate the quality of FODs derived from time-consuming, multi-shell high-angular-resolution dMRI research protocols. We also demonstrate tractography improvement, removing spurious connections and bridging missing connections. We further demonstrate that connectomes reconstructed by super-resolved FODs achieve comparable results to those obtained with more advanced dMRI acquisition protocols, on both HCP and clinical 3.0T data. Advances in deep-learning approaches used in FOD-Net facilitate the generation of high quality tractography/connectome analysis from existing clinical MRI environments. Our code is freely available at https://github.com/ruizengalways/FOD-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
morii完成签到,获得积分10
刚刚
银子吃好的完成签到,获得积分10
1秒前
1秒前
2秒前
罐装冰块发布了新的文献求助10
2秒前
wanci应助11采纳,获得10
2秒前
cc123完成签到,获得积分10
3秒前
慕青应助wwww采纳,获得10
3秒前
累哥完成签到,获得积分20
4秒前
Zxx完成签到,获得积分10
4秒前
xu发布了新的文献求助10
5秒前
jacob258发布了新的文献求助10
5秒前
大模型应助lmg采纳,获得10
5秒前
辛卫铎发布了新的文献求助10
5秒前
薛定谔的猫完成签到,获得积分10
5秒前
乔治完成签到 ,获得积分10
5秒前
he发布了新的文献求助10
6秒前
西贝子子完成签到,获得积分10
6秒前
6秒前
英姑应助whisper1108采纳,获得10
6秒前
零陌关注了科研通微信公众号
7秒前
8秒前
8秒前
壹yi完成签到,获得积分10
8秒前
8秒前
9秒前
乔治关注了科研通微信公众号
9秒前
keepory86发布了新的文献求助10
9秒前
welbeck完成签到,获得积分10
9秒前
Jasper应助HHHAN采纳,获得10
9秒前
哈雷彗星发布了新的文献求助10
9秒前
L1完成签到 ,获得积分10
10秒前
小鬼应助jiao采纳,获得20
10秒前
10秒前
哈密哈密完成签到,获得积分10
10秒前
xtt发布了新的文献求助10
12秒前
yoon发布了新的文献求助10
12秒前
ohbuisgf发布了新的文献求助10
12秒前
星辰大海应助xu采纳,获得10
13秒前
SYLH应助55215采纳,获得20
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953820
求助须知:如何正确求助?哪些是违规求助? 3499685
关于积分的说明 11096658
捐赠科研通 3230222
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801514