已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PET/CT Based EGFR Mutation Status Classification of NSCLC Using Deep Learning Features and Radiomics Features

接收机工作特性 列线图 无线电技术 医学 人工智能 卷积神经网络 突变 肺癌 深度学习 机器学习 肿瘤科 内科学 放射科 计算机科学 生物 生物化学 基因
作者
Weicheng Huang,Jingyi Wang,Haolin Wang,Yuxiang Zhang,Fengjun Zhao,Kang Li,Linzhi Su,Fei Kang,Xin Cao
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:13 被引量:20
标识
DOI:10.3389/fphar.2022.898529
摘要

Purpose: This study aimed to compare the performance of radiomics and deep learning in predicting EGFR mutation status in patients with lung cancer based on PET/CT images, and tried to explore a model with excellent prediction performance to accurately predict EGFR mutation status in patients with non-small cell lung cancer (NSCLC). Method: PET/CT images of 194 NSCLC patients from Xijing Hospital were collected and divided into a training set and a validation set according to the ratio of 7:3. Statistics were made on patients’ clinical characteristics, and a large number of features were extracted based on their PET/CT images (4306 radiomics features and 2048 deep learning features per person) with the pyradiomics toolkit and 3D convolutional neural network. Then a radiomics model (RM), a deep learning model (DLM), and a hybrid model (HM) were established. The performance of the three models was compared by receiver operating characteristic (ROC) curves, sensitivity, specificity, accuracy, calibration curves, and decision curves. In addition, a nomogram based on a deep learning score (DS) and the most significant clinical characteristic was plotted. Result: In the training set composed of 138 patients (64 with EGFR mutation and 74 without EGFR mutation), the area under the ROC curve (AUC) of HM (0.91, 95% CI: 0.86–0.96) was higher than that of RM (0.82, 95% CI: 0.75–0.89) and DLM (0.90, 95% CI: 0.85–0.95). In the validation set composed of 57 patients (32 with EGFR mutation and 25 without EGFR mutation), the AUC of HM (0.85, 95% CI: 0.77–0.93) was also higher than that of RM (0.68, 95% CI: 0.52–0.84) and DLM (0.79, 95% CI: 0.67–0.91). In all, HM achieved better diagnostic performance in predicting EGFR mutation status in NSCLC patients than two other models. Conclusion: Our study showed that the deep learning model based on PET/CT images had better performance than radiomics model in diagnosing EGFR mutation status of NSCLC patients based on PET/CT images. Combined with the most statistically significant clinical characteristic (smoking) and deep learning features, our hybrid model had better performance in predicting EGFR mutation types of patients than two other models, which could enable NSCLC patients to choose more personalized treatment schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili完成签到,获得积分10
1秒前
3秒前
qing_li完成签到,获得积分10
4秒前
4秒前
miaomiao123完成签到 ,获得积分10
5秒前
liwen发布了新的文献求助10
6秒前
勤劳凌青发布了新的文献求助20
6秒前
小蛇玩完成签到,获得积分10
6秒前
小二郎应助佛光辉采纳,获得10
7秒前
8秒前
8秒前
科研通AI6应助111采纳,获得10
9秒前
脑洞疼应助阿狸采纳,获得10
11秒前
jiangmi完成签到,获得积分10
11秒前
Z100关注了科研通微信公众号
14秒前
Omni发布了新的文献求助10
17秒前
18秒前
在水一方应助TN采纳,获得10
18秒前
leesc94完成签到 ,获得积分10
19秒前
20秒前
hy完成签到 ,获得积分10
20秒前
青雉流云完成签到,获得积分10
21秒前
Li发布了新的文献求助10
24秒前
科研通AI6应助Tulipe采纳,获得10
26秒前
27秒前
永远完成签到,获得积分10
31秒前
阿狸发布了新的文献求助10
32秒前
Akim应助开放的千青采纳,获得10
33秒前
34秒前
科研通AI6应助火星上仰采纳,获得10
34秒前
36秒前
36秒前
38秒前
咕哒猫应助佛光辉采纳,获得10
40秒前
lutuantuan完成签到,获得积分10
40秒前
yznfly应助ljq采纳,获得200
42秒前
42秒前
阿狸完成签到,获得积分10
43秒前
Ykaor完成签到 ,获得积分10
43秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627761
求助须知:如何正确求助?哪些是违规求助? 4714630
关于积分的说明 14963076
捐赠科研通 4785511
什么是DOI,文献DOI怎么找? 2555141
邀请新用户注册赠送积分活动 1516488
关于科研通互助平台的介绍 1476910