PET/CT Based EGFR Mutation Status Classification of NSCLC Using Deep Learning Features and Radiomics Features

接收机工作特性 列线图 无线电技术 医学 人工智能 卷积神经网络 突变 肺癌 深度学习 机器学习 肿瘤科 内科学 放射科 计算机科学 生物 基因 生物化学
作者
Weicheng Huang,Jingyi Wang,Haolin Wang,Yuxiang Zhang,Fengjun Zhao,Kang Li,Linzhi Su,Fei Kang,Xin Cao
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:13 被引量:20
标识
DOI:10.3389/fphar.2022.898529
摘要

Purpose: This study aimed to compare the performance of radiomics and deep learning in predicting EGFR mutation status in patients with lung cancer based on PET/CT images, and tried to explore a model with excellent prediction performance to accurately predict EGFR mutation status in patients with non-small cell lung cancer (NSCLC). Method: PET/CT images of 194 NSCLC patients from Xijing Hospital were collected and divided into a training set and a validation set according to the ratio of 7:3. Statistics were made on patients’ clinical characteristics, and a large number of features were extracted based on their PET/CT images (4306 radiomics features and 2048 deep learning features per person) with the pyradiomics toolkit and 3D convolutional neural network. Then a radiomics model (RM), a deep learning model (DLM), and a hybrid model (HM) were established. The performance of the three models was compared by receiver operating characteristic (ROC) curves, sensitivity, specificity, accuracy, calibration curves, and decision curves. In addition, a nomogram based on a deep learning score (DS) and the most significant clinical characteristic was plotted. Result: In the training set composed of 138 patients (64 with EGFR mutation and 74 without EGFR mutation), the area under the ROC curve (AUC) of HM (0.91, 95% CI: 0.86–0.96) was higher than that of RM (0.82, 95% CI: 0.75–0.89) and DLM (0.90, 95% CI: 0.85–0.95). In the validation set composed of 57 patients (32 with EGFR mutation and 25 without EGFR mutation), the AUC of HM (0.85, 95% CI: 0.77–0.93) was also higher than that of RM (0.68, 95% CI: 0.52–0.84) and DLM (0.79, 95% CI: 0.67–0.91). In all, HM achieved better diagnostic performance in predicting EGFR mutation status in NSCLC patients than two other models. Conclusion: Our study showed that the deep learning model based on PET/CT images had better performance than radiomics model in diagnosing EGFR mutation status of NSCLC patients based on PET/CT images. Combined with the most statistically significant clinical characteristic (smoking) and deep learning features, our hybrid model had better performance in predicting EGFR mutation types of patients than two other models, which could enable NSCLC patients to choose more personalized treatment schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clay_park完成签到,获得积分10
刚刚
狂野乌冬面完成签到 ,获得积分10
刚刚
2秒前
3秒前
糊涂的寒蕾完成签到,获得积分10
3秒前
AswinnLyu完成签到,获得积分10
3秒前
4秒前
fyy发布了新的文献求助10
4秒前
拾柒完成签到,获得积分20
4秒前
5秒前
cmq完成签到 ,获得积分10
6秒前
6秒前
6秒前
atension4发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
CodeCraft应助任性的茉莉采纳,获得10
8秒前
金甲狮王完成签到,获得积分10
9秒前
9秒前
DoctorYan发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
乘风破浪发布了新的文献求助10
11秒前
11秒前
细腻怜容发布了新的文献求助10
12秒前
plants完成签到,获得积分10
12秒前
114完成签到,获得积分20
12秒前
12秒前
13秒前
领导范儿应助Junehe采纳,获得10
13秒前
帆帆帆发布了新的文献求助10
13秒前
freewu发布了新的文献求助10
13秒前
拥有八根情丝完成签到 ,获得积分10
13秒前
13秒前
852应助相忘于江湖采纳,获得20
13秒前
嗯哼应助yemeiyu采纳,获得20
13秒前
烟花应助liquid采纳,获得10
13秒前
斯文败类应助999eichyy采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305036
求助须知:如何正确求助?哪些是违规求助? 2938975
关于积分的说明 8490811
捐赠科研通 2613426
什么是DOI,文献DOI怎么找? 1427420
科研通“疑难数据库(出版商)”最低求助积分说明 662969
邀请新用户注册赠送积分活动 647614