PET/CT Based EGFR Mutation Status Classification of NSCLC Using Deep Learning Features and Radiomics Features

接收机工作特性 列线图 无线电技术 医学 人工智能 卷积神经网络 突变 肺癌 深度学习 机器学习 肿瘤科 内科学 放射科 计算机科学 生物 生物化学 基因
作者
Weicheng Huang,Jingyi Wang,Haolin Wang,Yuxiang Zhang,Fengjun Zhao,Kang Li,Linzhi Su,Fei Kang,Xin Cao
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:13 被引量:20
标识
DOI:10.3389/fphar.2022.898529
摘要

Purpose: This study aimed to compare the performance of radiomics and deep learning in predicting EGFR mutation status in patients with lung cancer based on PET/CT images, and tried to explore a model with excellent prediction performance to accurately predict EGFR mutation status in patients with non-small cell lung cancer (NSCLC). Method: PET/CT images of 194 NSCLC patients from Xijing Hospital were collected and divided into a training set and a validation set according to the ratio of 7:3. Statistics were made on patients’ clinical characteristics, and a large number of features were extracted based on their PET/CT images (4306 radiomics features and 2048 deep learning features per person) with the pyradiomics toolkit and 3D convolutional neural network. Then a radiomics model (RM), a deep learning model (DLM), and a hybrid model (HM) were established. The performance of the three models was compared by receiver operating characteristic (ROC) curves, sensitivity, specificity, accuracy, calibration curves, and decision curves. In addition, a nomogram based on a deep learning score (DS) and the most significant clinical characteristic was plotted. Result: In the training set composed of 138 patients (64 with EGFR mutation and 74 without EGFR mutation), the area under the ROC curve (AUC) of HM (0.91, 95% CI: 0.86–0.96) was higher than that of RM (0.82, 95% CI: 0.75–0.89) and DLM (0.90, 95% CI: 0.85–0.95). In the validation set composed of 57 patients (32 with EGFR mutation and 25 without EGFR mutation), the AUC of HM (0.85, 95% CI: 0.77–0.93) was also higher than that of RM (0.68, 95% CI: 0.52–0.84) and DLM (0.79, 95% CI: 0.67–0.91). In all, HM achieved better diagnostic performance in predicting EGFR mutation status in NSCLC patients than two other models. Conclusion: Our study showed that the deep learning model based on PET/CT images had better performance than radiomics model in diagnosing EGFR mutation status of NSCLC patients based on PET/CT images. Combined with the most statistically significant clinical characteristic (smoking) and deep learning features, our hybrid model had better performance in predicting EGFR mutation types of patients than two other models, which could enable NSCLC patients to choose more personalized treatment schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yueyue发布了新的文献求助10
1秒前
1秒前
feifei完成签到,获得积分10
5秒前
Tan完成签到 ,获得积分10
5秒前
roro熊发布了新的文献求助10
6秒前
Hope完成签到,获得积分10
6秒前
内向蜡烛发布了新的文献求助10
6秒前
7秒前
10秒前
11秒前
michael发布了新的文献求助10
11秒前
哈哈发布了新的文献求助10
12秒前
闪闪的翠绿完成签到,获得积分20
12秒前
你嵙这个期刊没买应助lyb采纳,获得10
15秒前
32429606完成签到 ,获得积分10
16秒前
16秒前
dandandan完成签到 ,获得积分10
17秒前
阡陌完成签到,获得积分10
21秒前
秀丽机器猫关注了科研通微信公众号
25秒前
哈哈完成签到,获得积分10
25秒前
HH完成签到,获得积分10
25秒前
深情安青应助闪闪的翠绿采纳,获得10
26秒前
科研通AI2S应助迅速路人采纳,获得10
27秒前
方圆几里完成签到,获得积分10
28秒前
28秒前
cocobear完成签到 ,获得积分10
30秒前
万能图书馆应助zjl1112采纳,获得50
31秒前
111完成签到 ,获得积分10
32秒前
huyan发布了新的文献求助10
34秒前
坚定的迎波完成签到,获得积分10
38秒前
yoneyamai完成签到,获得积分10
42秒前
43秒前
MQueen完成签到,获得积分10
44秒前
zm完成签到,获得积分10
44秒前
michael发布了新的文献求助30
45秒前
45秒前
yyy发布了新的文献求助10
45秒前
ding应助内向蜡烛采纳,获得10
45秒前
袁奇点完成签到,获得积分10
46秒前
huyan完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565514
求助须知:如何正确求助?哪些是违规求助? 4650595
关于积分的说明 14691947
捐赠科研通 4592539
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492048
关于科研通互助平台的介绍 1463269