PET/CT Based EGFR Mutation Status Classification of NSCLC Using Deep Learning Features and Radiomics Features

接收机工作特性 列线图 无线电技术 医学 人工智能 卷积神经网络 突变 肺癌 深度学习 机器学习 肿瘤科 内科学 放射科 计算机科学 生物 生物化学 基因
作者
Weicheng Huang,Jingyi Wang,Haolin Wang,Yuxiang Zhang,Fengjun Zhao,Kang Li,Linzhi Su,Fei Kang,Xin Cao
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:13 被引量:20
标识
DOI:10.3389/fphar.2022.898529
摘要

Purpose: This study aimed to compare the performance of radiomics and deep learning in predicting EGFR mutation status in patients with lung cancer based on PET/CT images, and tried to explore a model with excellent prediction performance to accurately predict EGFR mutation status in patients with non-small cell lung cancer (NSCLC). Method: PET/CT images of 194 NSCLC patients from Xijing Hospital were collected and divided into a training set and a validation set according to the ratio of 7:3. Statistics were made on patients’ clinical characteristics, and a large number of features were extracted based on their PET/CT images (4306 radiomics features and 2048 deep learning features per person) with the pyradiomics toolkit and 3D convolutional neural network. Then a radiomics model (RM), a deep learning model (DLM), and a hybrid model (HM) were established. The performance of the three models was compared by receiver operating characteristic (ROC) curves, sensitivity, specificity, accuracy, calibration curves, and decision curves. In addition, a nomogram based on a deep learning score (DS) and the most significant clinical characteristic was plotted. Result: In the training set composed of 138 patients (64 with EGFR mutation and 74 without EGFR mutation), the area under the ROC curve (AUC) of HM (0.91, 95% CI: 0.86–0.96) was higher than that of RM (0.82, 95% CI: 0.75–0.89) and DLM (0.90, 95% CI: 0.85–0.95). In the validation set composed of 57 patients (32 with EGFR mutation and 25 without EGFR mutation), the AUC of HM (0.85, 95% CI: 0.77–0.93) was also higher than that of RM (0.68, 95% CI: 0.52–0.84) and DLM (0.79, 95% CI: 0.67–0.91). In all, HM achieved better diagnostic performance in predicting EGFR mutation status in NSCLC patients than two other models. Conclusion: Our study showed that the deep learning model based on PET/CT images had better performance than radiomics model in diagnosing EGFR mutation status of NSCLC patients based on PET/CT images. Combined with the most statistically significant clinical characteristic (smoking) and deep learning features, our hybrid model had better performance in predicting EGFR mutation types of patients than two other models, which could enable NSCLC patients to choose more personalized treatment schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aa发布了新的文献求助30
2秒前
852应助CCTV采纳,获得10
3秒前
小二郎应助圣斗士采纳,获得10
3秒前
21完成签到 ,获得积分10
4秒前
5秒前
八九发布了新的文献求助10
5秒前
CipherSage应助aa采纳,获得30
6秒前
浮游应助Liz111采纳,获得10
7秒前
新羽完成签到,获得积分10
7秒前
FashionBoy应助铁瓜李采纳,获得10
7秒前
畅快自行车完成签到,获得积分10
7秒前
小破网完成签到 ,获得积分0
7秒前
8秒前
SciGPT应助在南方看北方采纳,获得10
8秒前
王丹靖完成签到 ,获得积分10
9秒前
10秒前
无私安白发布了新的文献求助10
10秒前
11秒前
努力哥完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助100
14秒前
可爱的函函应助SKF采纳,获得20
15秒前
15秒前
15秒前
16秒前
Xxuan完成签到,获得积分10
16秒前
16秒前
东方三问完成签到,获得积分10
16秒前
grassroot发布了新的文献求助10
17秒前
禾禾完成签到,获得积分10
17秒前
倒霉的芒果完成签到 ,获得积分10
17秒前
白华苍松发布了新的文献求助10
18秒前
卷卷发布了新的文献求助10
18秒前
欢喜不悔发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
求助人员应助Wd采纳,获得10
21秒前
传奇3应助Painkiller_采纳,获得10
21秒前
22秒前
22秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586279
求助须知:如何正确求助?哪些是违规求助? 4669574
关于积分的说明 14778915
捐赠科研通 4619294
什么是DOI,文献DOI怎么找? 2530818
邀请新用户注册赠送积分活动 1499652
关于科研通互助平台的介绍 1467830