亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PET/CT Based EGFR Mutation Status Classification of NSCLC Using Deep Learning Features and Radiomics Features

接收机工作特性 列线图 无线电技术 医学 人工智能 卷积神经网络 突变 肺癌 深度学习 机器学习 肿瘤科 内科学 放射科 计算机科学 生物 生物化学 基因
作者
Weicheng Huang,Jingyi Wang,Haolin Wang,Yuxiang Zhang,Fengjun Zhao,Kang Li,Linzhi Su,Fei Kang,Xin Cao
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:13 被引量:20
标识
DOI:10.3389/fphar.2022.898529
摘要

Purpose: This study aimed to compare the performance of radiomics and deep learning in predicting EGFR mutation status in patients with lung cancer based on PET/CT images, and tried to explore a model with excellent prediction performance to accurately predict EGFR mutation status in patients with non-small cell lung cancer (NSCLC). Method: PET/CT images of 194 NSCLC patients from Xijing Hospital were collected and divided into a training set and a validation set according to the ratio of 7:3. Statistics were made on patients’ clinical characteristics, and a large number of features were extracted based on their PET/CT images (4306 radiomics features and 2048 deep learning features per person) with the pyradiomics toolkit and 3D convolutional neural network. Then a radiomics model (RM), a deep learning model (DLM), and a hybrid model (HM) were established. The performance of the three models was compared by receiver operating characteristic (ROC) curves, sensitivity, specificity, accuracy, calibration curves, and decision curves. In addition, a nomogram based on a deep learning score (DS) and the most significant clinical characteristic was plotted. Result: In the training set composed of 138 patients (64 with EGFR mutation and 74 without EGFR mutation), the area under the ROC curve (AUC) of HM (0.91, 95% CI: 0.86–0.96) was higher than that of RM (0.82, 95% CI: 0.75–0.89) and DLM (0.90, 95% CI: 0.85–0.95). In the validation set composed of 57 patients (32 with EGFR mutation and 25 without EGFR mutation), the AUC of HM (0.85, 95% CI: 0.77–0.93) was also higher than that of RM (0.68, 95% CI: 0.52–0.84) and DLM (0.79, 95% CI: 0.67–0.91). In all, HM achieved better diagnostic performance in predicting EGFR mutation status in NSCLC patients than two other models. Conclusion: Our study showed that the deep learning model based on PET/CT images had better performance than radiomics model in diagnosing EGFR mutation status of NSCLC patients based on PET/CT images. Combined with the most statistically significant clinical characteristic (smoking) and deep learning features, our hybrid model had better performance in predicting EGFR mutation types of patients than two other models, which could enable NSCLC patients to choose more personalized treatment schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜雨完成签到,获得积分10
1秒前
小马甲应助小新采纳,获得10
1秒前
喜宝完成签到,获得积分20
5秒前
小小科研牛马完成签到 ,获得积分10
6秒前
深情安青应助爱笑的大开采纳,获得10
8秒前
FashionBoy应助喜宝采纳,获得10
8秒前
9秒前
兮兮完成签到 ,获得积分10
14秒前
小橙子完成签到 ,获得积分10
16秒前
水牛完成签到,获得积分10
16秒前
18秒前
Cmqq发布了新的文献求助10
21秒前
30秒前
只想发财完成签到 ,获得积分10
37秒前
思源应助Cmqq采纳,获得10
39秒前
去去完成签到 ,获得积分10
41秒前
45秒前
标致的怀绿完成签到,获得积分20
47秒前
50秒前
情怀应助哎亚采纳,获得10
1分钟前
1分钟前
柚子完成签到 ,获得积分10
1分钟前
传奇3应助wonder123采纳,获得10
1分钟前
Lucas应助小不点采纳,获得30
1分钟前
1分钟前
所所应助maofeng采纳,获得10
1分钟前
小蘑菇应助标致的怀绿采纳,获得10
1分钟前
Cmqq发布了新的文献求助10
1分钟前
1分钟前
1分钟前
丘比特应助Cmqq采纳,获得10
1分钟前
maofeng完成签到,获得积分10
1分钟前
1分钟前
雪酪芋泥球完成签到 ,获得积分10
1分钟前
悄悄.完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
半夏完成签到 ,获得积分10
1分钟前
子南归完成签到,获得积分10
1分钟前
香飘飘完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599726
求助须知:如何正确求助?哪些是违规求助? 4685467
关于积分的说明 14838489
捐赠科研通 4670150
什么是DOI,文献DOI怎么找? 2538175
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898