PET/CT Based EGFR Mutation Status Classification of NSCLC Using Deep Learning Features and Radiomics Features

接收机工作特性 列线图 无线电技术 医学 人工智能 卷积神经网络 突变 肺癌 深度学习 机器学习 肿瘤科 内科学 放射科 计算机科学 生物 生物化学 基因
作者
Weicheng Huang,Jingyi Wang,Haolin Wang,Yuxiang Zhang,Fengjun Zhao,Kang Li,Linzhi Su,Fei Kang,Xin Cao
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:13 被引量:20
标识
DOI:10.3389/fphar.2022.898529
摘要

Purpose: This study aimed to compare the performance of radiomics and deep learning in predicting EGFR mutation status in patients with lung cancer based on PET/CT images, and tried to explore a model with excellent prediction performance to accurately predict EGFR mutation status in patients with non-small cell lung cancer (NSCLC). Method: PET/CT images of 194 NSCLC patients from Xijing Hospital were collected and divided into a training set and a validation set according to the ratio of 7:3. Statistics were made on patients’ clinical characteristics, and a large number of features were extracted based on their PET/CT images (4306 radiomics features and 2048 deep learning features per person) with the pyradiomics toolkit and 3D convolutional neural network. Then a radiomics model (RM), a deep learning model (DLM), and a hybrid model (HM) were established. The performance of the three models was compared by receiver operating characteristic (ROC) curves, sensitivity, specificity, accuracy, calibration curves, and decision curves. In addition, a nomogram based on a deep learning score (DS) and the most significant clinical characteristic was plotted. Result: In the training set composed of 138 patients (64 with EGFR mutation and 74 without EGFR mutation), the area under the ROC curve (AUC) of HM (0.91, 95% CI: 0.86–0.96) was higher than that of RM (0.82, 95% CI: 0.75–0.89) and DLM (0.90, 95% CI: 0.85–0.95). In the validation set composed of 57 patients (32 with EGFR mutation and 25 without EGFR mutation), the AUC of HM (0.85, 95% CI: 0.77–0.93) was also higher than that of RM (0.68, 95% CI: 0.52–0.84) and DLM (0.79, 95% CI: 0.67–0.91). In all, HM achieved better diagnostic performance in predicting EGFR mutation status in NSCLC patients than two other models. Conclusion: Our study showed that the deep learning model based on PET/CT images had better performance than radiomics model in diagnosing EGFR mutation status of NSCLC patients based on PET/CT images. Combined with the most statistically significant clinical characteristic (smoking) and deep learning features, our hybrid model had better performance in predicting EGFR mutation types of patients than two other models, which could enable NSCLC patients to choose more personalized treatment schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shishi发布了新的文献求助10
1秒前
1秒前
1秒前
淡定依玉完成签到,获得积分10
3秒前
紫菜完成签到,获得积分10
3秒前
哈哈哈哈发布了新的文献求助10
3秒前
干净映天完成签到 ,获得积分10
5秒前
我爱学习发布了新的文献求助10
8秒前
10秒前
科研通AI2S应助jiang采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
JackHYH完成签到,获得积分10
12秒前
胡慧婷完成签到 ,获得积分20
13秒前
安详靖巧完成签到,获得积分10
14秒前
shun完成签到,获得积分10
14秒前
小糖发布了新的文献求助10
14秒前
15秒前
小肖小肖还是小肖完成签到,获得积分10
15秒前
宅多点应助jack采纳,获得10
16秒前
17秒前
17秒前
打打应助我爱学习采纳,获得10
19秒前
Iridescent完成签到 ,获得积分10
21秒前
张明玉发布了新的文献求助10
22秒前
23秒前
小乌龟完成签到,获得积分10
23秒前
HaonanZhang应助银河系浮光采纳,获得10
23秒前
TTQQX完成签到,获得积分10
24秒前
打打应助zyy采纳,获得30
26秒前
奋斗的夜山完成签到 ,获得积分10
27秒前
27秒前
科研通AI6应助guoruiyong采纳,获得10
28秒前
开心的夏天完成签到,获得积分10
29秒前
wanci应助小富婆采纳,获得10
29秒前
橙子发布了新的文献求助10
29秒前
30秒前
30秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553225
求助须知:如何正确求助?哪些是违规求助? 4637764
关于积分的说明 14650974
捐赠科研通 4579638
什么是DOI,文献DOI怎么找? 2511776
邀请新用户注册赠送积分活动 1486737
关于科研通互助平台的介绍 1457665