Identification of Anticancer and Anti-inflammatory Drugs from Drugtarget Interaction Descriptors by Machine Learning

药品 支持向量机 抗癌药 人工智能 药物与药物的相互作用 分子描述符 药物重新定位 机器学习 药物靶点 药物发现 药物开发 数量结构-活动关系 化学 计算机科学 模式识别(心理学) 药理学 医学 生物化学
作者
Songtao Huang,Ding Yanrui
出处
期刊:Letters in Drug Design & Discovery [Bentham Science Publishers]
卷期号:19 (9): 800-810
标识
DOI:10.2174/1570180819666220114114752
摘要

Background: Drug repositioning is an important subject in drug-disease research. In the past, most studies simply used drug descriptors as the feature vector to classify drugs or targets or used qualitative data about drug-target or drug-disease to predict drug-target interactions. These data provide limited information for drug repositioning. Objective: Considering both drugs and targets and constructing quantitative drug-target interaction descriptors as a method of drug characteristics are of great significance to the study of drug repositioning. Methods: Taking anticancer and anti-inflammatory drugs as research objects, the interaction sites between drugs and targets were determined by molecular docking. Sixty-seven drug-target interaction descriptors were calculated to describe the drug-target interactions, and 22 important descriptors were screened for drug classification by SVM, LightGBM, and MLP. Results: The accuracy of SVM, LightGBM, and MLP reached 93.29%, 92.68%, and 94.51%, their Matthews correlation coefficients reached 0.852, 0.840, and 0.882, and their areas under the ROC curve reached 0.977, 0.969, and 0.968, respectively. Conclusion: Using drug-target interaction descriptors to build machine learning models can obtain better results for drug classification. Number of atom pairs, force field, hydrophobic interactions, and bSASA are the key features for classifying anticancer and anti-inflammatory drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
愤怒的乐瑶完成签到,获得积分10
刚刚
Wuu完成签到,获得积分10
1秒前
Lucas应助hai采纳,获得10
1秒前
1秒前
淡淡半莲完成签到,获得积分10
1秒前
jtyt发布了新的文献求助30
2秒前
徐畅完成签到 ,获得积分10
2秒前
顾矜应助AYEFORBIDER采纳,获得10
2秒前
viyo发布了新的文献求助10
3秒前
chenqiumu应助yyyyy采纳,获得30
3秒前
李爱国应助你好纠结伦采纳,获得10
3秒前
追寻的秋玲完成签到,获得积分10
4秒前
合适的初蓝完成签到,获得积分10
4秒前
lx发布了新的文献求助10
4秒前
4秒前
Oolong完成签到,获得积分10
4秒前
标致幼菱完成签到,获得积分10
5秒前
文艺的冬日完成签到,获得积分10
5秒前
6秒前
yousheng完成签到,获得积分10
7秒前
7秒前
8秒前
活泼蜡烛发布了新的文献求助10
8秒前
CatZ完成签到 ,获得积分10
9秒前
9秒前
予诚应助沃耀珐艺区采纳,获得20
9秒前
Zzz发布了新的文献求助10
10秒前
limuzi827完成签到 ,获得积分10
10秒前
桐桐应助曹小仙男采纳,获得10
10秒前
10秒前
细腻海蓝发布了新的文献求助10
11秒前
11秒前
cindy发布了新的文献求助10
13秒前
bfl完成签到,获得积分10
13秒前
13秒前
Karouline完成签到,获得积分10
14秒前
大力冰绿应助111111采纳,获得20
14秒前
lightshark发布了新的文献求助10
15秒前
sunny完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283823
求助须知:如何正确求助?哪些是违规求助? 4437576
关于积分的说明 13813988
捐赠科研通 4318377
什么是DOI,文献DOI怎么找? 2370395
邀请新用户注册赠送积分活动 1365780
关于科研通互助平台的介绍 1329225