已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification of Anticancer and Anti-inflammatory Drugs from Drugtarget Interaction Descriptors by Machine Learning

药品 支持向量机 抗癌药 人工智能 药物与药物的相互作用 分子描述符 药物重新定位 机器学习 药物靶点 药物发现 药物开发 数量结构-活动关系 化学 计算机科学 模式识别(心理学) 药理学 医学 生物化学
作者
Songtao Huang,Ding Yanrui
出处
期刊:Letters in Drug Design & Discovery [Bentham Science Publishers]
卷期号:19 (9): 800-810
标识
DOI:10.2174/1570180819666220114114752
摘要

Background: Drug repositioning is an important subject in drug-disease research. In the past, most studies simply used drug descriptors as the feature vector to classify drugs or targets or used qualitative data about drug-target or drug-disease to predict drug-target interactions. These data provide limited information for drug repositioning. Objective: Considering both drugs and targets and constructing quantitative drug-target interaction descriptors as a method of drug characteristics are of great significance to the study of drug repositioning. Methods: Taking anticancer and anti-inflammatory drugs as research objects, the interaction sites between drugs and targets were determined by molecular docking. Sixty-seven drug-target interaction descriptors were calculated to describe the drug-target interactions, and 22 important descriptors were screened for drug classification by SVM, LightGBM, and MLP. Results: The accuracy of SVM, LightGBM, and MLP reached 93.29%, 92.68%, and 94.51%, their Matthews correlation coefficients reached 0.852, 0.840, and 0.882, and their areas under the ROC curve reached 0.977, 0.969, and 0.968, respectively. Conclusion: Using drug-target interaction descriptors to build machine learning models can obtain better results for drug classification. Number of atom pairs, force field, hydrophobic interactions, and bSASA are the key features for classifying anticancer and anti-inflammatory drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mimi发布了新的文献求助10
刚刚
1秒前
kinsley应助Suraim采纳,获得10
2秒前
寒生完成签到,获得积分10
2秒前
乐观的尔琴完成签到,获得积分10
3秒前
5秒前
linkman发布了新的文献求助10
6秒前
7秒前
7秒前
深情安青应助小红帽采纳,获得10
8秒前
8秒前
汉堡包应助久日采纳,获得10
8秒前
寻梦发布了新的文献求助10
9秒前
10秒前
coconut发布了新的文献求助10
12秒前
14秒前
bianxxing发布了新的文献求助30
14秒前
善学以致用应助寻梦采纳,获得10
14秒前
李爱国应助张琳琳采纳,获得10
17秒前
归尘发布了新的文献求助30
19秒前
符小狮关注了科研通微信公众号
19秒前
20秒前
星辰大海应助狗子采纳,获得10
21秒前
王大橘完成签到 ,获得积分10
26秒前
洁白的故人完成签到 ,获得积分10
27秒前
yulijuan发布了新的文献求助10
27秒前
28秒前
30秒前
彭于晏应助科研通管家采纳,获得10
30秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
30秒前
传奇3应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
30秒前
31秒前
31秒前
31秒前
31秒前
小二郎应助科研通管家采纳,获得10
31秒前
orixero应助科研通管家采纳,获得10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962973
求助须知:如何正确求助?哪些是违规求助? 3508922
关于积分的说明 11144066
捐赠科研通 3241877
什么是DOI,文献DOI怎么找? 1791701
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803583