亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning to use chopsticks in diverse gripping styles

运动学 计算机科学 人工智能 钥匙(锁) 运动(物理) 强化学习 机器人学 弹道 任务(项目管理) 稳健性(进化) 计算机视觉 机器人 工程类 经典力学 生物化学 计算机安全 基因 物理 化学 系统工程 天文
作者
Zeshi Yang,KangKang Yin,Libin Liu
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:41 (4): 1-17 被引量:16
标识
DOI:10.1145/3528223.3530057
摘要

Learning dexterous manipulation skills is a long-standing challenge in computer graphics and robotics, especially when the task involves complex and delicate interactions between the hands, tools and objects. In this paper, we focus on chopsticks-based object relocation tasks, which are common yet demanding. The key to successful chopsticks skills is steady gripping of the sticks that also supports delicate maneuvers. We automatically discover physically valid chopsticks holding poses by Bayesian Optimization (BO) and Deep Reinforcement Learning (DRL), which works for multiple gripping styles and hand morphologies without the need of example data. Given as input the discovered gripping poses and desired objects to be moved, we build physics-based hand controllers to accomplish relocation tasks in two stages. First, kinematic trajectories are synthesized for the chopsticks and hand in a motion planning stage. The key components of our motion planner include a grasping model to select suitable chopsticks configurations for grasping the object, and a trajectory optimization module to generate collision-free chopsticks trajectories. Then we train physics-based hand controllers through DRL again to track the desired kinematic trajectories produced by the motion planner. We demonstrate the capabilities of our framework by relocating objects of various shapes and sizes, in diverse gripping styles and holding positions for multiple hand morphologies. Our system achieves faster learning speed and better control robustness, when compared to vanilla systems that attempt to learn chopstick-based skills without a gripping pose optimization module and/or without a kinematic motion planner. Our code and models are available at this link. 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助CC采纳,获得30
17秒前
Criminology34应助科研通管家采纳,获得10
42秒前
47秒前
49秒前
Medhanie发布了新的文献求助10
52秒前
无花果应助ceeray23采纳,获得20
55秒前
马文玉发布了新的文献求助10
56秒前
59秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
1分钟前
马文玉完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得30
2分钟前
牧沛凝完成签到,获得积分10
2分钟前
牧沛凝发布了新的文献求助10
2分钟前
Jenny完成签到,获得积分10
3分钟前
ljx完成签到 ,获得积分10
3分钟前
安室透的透完成签到,获得积分10
3分钟前
充电宝应助安室透的透采纳,获得10
3分钟前
欣喜的香菱完成签到 ,获得积分10
4分钟前
科研通AI6应助艾扎克采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得20
4分钟前
4分钟前
Hello应助科研通管家采纳,获得10
4分钟前
慕青应助渟柠采纳,获得10
5分钟前
香蕉觅云应助CC采纳,获得10
5分钟前
5分钟前
渟柠发布了新的文献求助10
5分钟前
笨笨的怜雪完成签到 ,获得积分10
5分钟前
渟柠完成签到 ,获得积分20
5分钟前
5分钟前
852应助ceeray23采纳,获得20
5分钟前
研友_89Nm7L发布了新的文献求助10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622275
求助须知:如何正确求助?哪些是违规求助? 4707314
关于积分的说明 14939060
捐赠科研通 4770194
什么是DOI,文献DOI怎么找? 2552277
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475070