Learning to use chopsticks in diverse gripping styles

运动学 计算机科学 人工智能 钥匙(锁) 运动(物理) 强化学习 机器人学 弹道 任务(项目管理) 稳健性(进化) 计算机视觉 机器人 工程类 生物化学 化学 物理 计算机安全 系统工程 经典力学 天文 基因
作者
Zeshi Yang,KangKang Yin,Libin Liu
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:41 (4): 1-17 被引量:16
标识
DOI:10.1145/3528223.3530057
摘要

Learning dexterous manipulation skills is a long-standing challenge in computer graphics and robotics, especially when the task involves complex and delicate interactions between the hands, tools and objects. In this paper, we focus on chopsticks-based object relocation tasks, which are common yet demanding. The key to successful chopsticks skills is steady gripping of the sticks that also supports delicate maneuvers. We automatically discover physically valid chopsticks holding poses by Bayesian Optimization (BO) and Deep Reinforcement Learning (DRL), which works for multiple gripping styles and hand morphologies without the need of example data. Given as input the discovered gripping poses and desired objects to be moved, we build physics-based hand controllers to accomplish relocation tasks in two stages. First, kinematic trajectories are synthesized for the chopsticks and hand in a motion planning stage. The key components of our motion planner include a grasping model to select suitable chopsticks configurations for grasping the object, and a trajectory optimization module to generate collision-free chopsticks trajectories. Then we train physics-based hand controllers through DRL again to track the desired kinematic trajectories produced by the motion planner. We demonstrate the capabilities of our framework by relocating objects of various shapes and sizes, in diverse gripping styles and holding positions for multiple hand morphologies. Our system achieves faster learning speed and better control robustness, when compared to vanilla systems that attempt to learn chopstick-based skills without a gripping pose optimization module and/or without a kinematic motion planner. Our code and models are available at this link. 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Peanut完成签到,获得积分20
1秒前
1秒前
2秒前
Vera123完成签到,获得积分10
2秒前
Aurora完成签到,获得积分10
2秒前
2秒前
万能图书馆应助逐鹿采纳,获得10
3秒前
riverflowing发布了新的文献求助10
6秒前
7秒前
星辰大海应助yy采纳,获得10
7秒前
ding应助糊涂的豁采纳,获得10
7秒前
epmoct完成签到 ,获得积分10
7秒前
Peanut发布了新的文献求助10
7秒前
10秒前
一一应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
一一应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
一一应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
嗯哼应助roclie采纳,获得10
11秒前
浅笑应助momo采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
fifteen应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
11秒前
大模型应助科研通管家采纳,获得10
12秒前
12秒前
嗯哼应助科研通管家采纳,获得20
12秒前
Aurora发布了新的文献求助10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
英姑应助兔宝宝采纳,获得10
13秒前
13秒前
点点白帆发布了新的文献求助10
15秒前
Bloom发布了新的文献求助10
16秒前
16秒前
16秒前
顾矜应助小药师采纳,获得30
17秒前
zhuang发布了新的文献求助10
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259854
求助须知:如何正确求助?哪些是违规求助? 2901321
关于积分的说明 8315056
捐赠科研通 2570853
什么是DOI,文献DOI怎么找? 1396709
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631933