Learning to use chopsticks in diverse gripping styles

运动学 计算机科学 人工智能 钥匙(锁) 运动(物理) 强化学习 机器人学 弹道 任务(项目管理) 稳健性(进化) 计算机视觉 机器人 工程类 经典力学 生物化学 计算机安全 基因 物理 化学 系统工程 天文
作者
Zeshi Yang,KangKang Yin,Libin Liu
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:41 (4): 1-17 被引量:16
标识
DOI:10.1145/3528223.3530057
摘要

Learning dexterous manipulation skills is a long-standing challenge in computer graphics and robotics, especially when the task involves complex and delicate interactions between the hands, tools and objects. In this paper, we focus on chopsticks-based object relocation tasks, which are common yet demanding. The key to successful chopsticks skills is steady gripping of the sticks that also supports delicate maneuvers. We automatically discover physically valid chopsticks holding poses by Bayesian Optimization (BO) and Deep Reinforcement Learning (DRL), which works for multiple gripping styles and hand morphologies without the need of example data. Given as input the discovered gripping poses and desired objects to be moved, we build physics-based hand controllers to accomplish relocation tasks in two stages. First, kinematic trajectories are synthesized for the chopsticks and hand in a motion planning stage. The key components of our motion planner include a grasping model to select suitable chopsticks configurations for grasping the object, and a trajectory optimization module to generate collision-free chopsticks trajectories. Then we train physics-based hand controllers through DRL again to track the desired kinematic trajectories produced by the motion planner. We demonstrate the capabilities of our framework by relocating objects of various shapes and sizes, in diverse gripping styles and holding positions for multiple hand morphologies. Our system achieves faster learning speed and better control robustness, when compared to vanilla systems that attempt to learn chopstick-based skills without a gripping pose optimization module and/or without a kinematic motion planner. Our code and models are available at this link. 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mysci完成签到,获得积分10
1秒前
2秒前
Quzhengkai发布了新的文献求助10
3秒前
3秒前
4秒前
落寞晓灵完成签到,获得积分10
4秒前
ORAzzz应助翠翠采纳,获得20
5秒前
zoe完成签到,获得积分10
5秒前
习习应助学术小白采纳,获得10
5秒前
6秒前
7秒前
tianny关注了科研通微信公众号
8秒前
8秒前
CO2发布了新的文献求助10
8秒前
桐桐应助zhangscience采纳,获得10
9秒前
求助发布了新的文献求助10
10秒前
buno应助zoe采纳,获得10
11秒前
junzilan发布了新的文献求助10
11秒前
11秒前
细品岁月完成签到 ,获得积分10
11秒前
细心书蕾完成签到 ,获得积分10
12秒前
无花果应助l11x29采纳,获得10
14秒前
14秒前
老詹头发布了新的文献求助10
14秒前
思源应助叫滚滚采纳,获得10
15秒前
16秒前
刘歌完成签到 ,获得积分10
16秒前
阿巡完成签到,获得积分10
16秒前
Chen完成签到,获得积分10
18秒前
LSH970829发布了新的文献求助10
18秒前
哈哈哈完成签到 ,获得积分10
19秒前
汤姆完成签到,获得积分10
19秒前
21秒前
21秒前
翠翠完成签到,获得积分10
22秒前
22秒前
LSH970829完成签到,获得积分10
23秒前
Lyg完成签到,获得积分20
24秒前
坚强的樱发布了新的文献求助10
24秒前
baodingning完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808