Detecting how time is subjectively perceived based on event-related potentials (ERPs): a machine learning approach

支持向量机 怪胎范式 脑电图 脑-机接口 随机森林 事件相关电位 人工智能 计算机科学 模式识别(心理学) 感知 逻辑回归 心理学 语音识别 机器学习 神经科学
作者
Hoda Jalalkamali,Amirhossein Tajik,Rashid Hatami,Hossein Nezamabadi‐pour
出处
期刊:International Journal of Neuroscience [Informa]
卷期号:134 (4): 372-380 被引量:1
标识
DOI:10.1080/00207454.2022.2103413
摘要

Background and objective: Time perception is essential for the precise performance of many of our activities and the coordination between different modalities. But it is distorted in many diseases and disorders. Event-related potentials (ERP) have long been used to understand better how the human brain perceives time, but machine learning methods have rarely been used to detect a person's time perception from his/her ERPs.Methods: In this study, EEG signals of the individuals were recorded while performing an auditory oddball time discrimination task. After features were extracted from ERPs, data balancing, and feature selection, machine learning models were used to distinguish between the oddball durations of 400 ms and 600 ms from standard durations of 500 ms. ERP results showed that the P3 evoked by the 600 ms oddball stimuli appeared about 200 ms later than that of the 400 ms oddball tones. Classification performance results indicated that support vector machine (SVM) outperformed K-nearest neighbors (KNN), Random Forest, and Logistic regression models.Results: The accuracy of SVM was 91.24, 92.96, and 89.9 for the three used labeling modes, respectively. Another important finding was that most features selected for classification were in the P3 component range, supporting the observed significant effect of duration on the P3. Although all N1, P2, N2, and P3 components contributed to detecting the desired durations.Conclusion: Therefore, results of this study suggest the P3 component as a potential candidate to detect sub-second periods in future researches on brain-computer interface (BCI) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜之枫发布了新的文献求助10
刚刚
1秒前
深情安青应助俊逸书琴采纳,获得10
1秒前
ured发布了新的文献求助10
2秒前
转山转水转出了自我完成签到 ,获得积分10
3秒前
自家老王发布了新的文献求助10
3秒前
3秒前
lonemen完成签到,获得积分10
4秒前
4秒前
小任吃不胖完成签到,获得积分10
5秒前
言三斤发布了新的文献求助10
5秒前
5秒前
Capacition6完成签到,获得积分10
6秒前
香蕉觅云应助张美丽采纳,获得10
6秒前
肉肉儿发布了新的文献求助10
7秒前
RSHL完成签到 ,获得积分10
7秒前
8秒前
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
Morri完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
9秒前
云淡风轻应助科研通管家采纳,获得20
10秒前
852应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
liao完成签到,获得积分10
10秒前
11秒前
哈哈劳发布了新的文献求助30
11秒前
丫头完成签到,获得积分10
11秒前
rrrrrrry发布了新的文献求助10
11秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3106345
求助须知:如何正确求助?哪些是违规求助? 2757343
关于积分的说明 7644512
捐赠科研通 2411634
什么是DOI,文献DOI怎么找? 1279439
科研通“疑难数据库(出版商)”最低求助积分说明 617805
版权声明 599271