重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Detecting how time is subjectively perceived based on event-related potentials (ERPs): a machine learning approach

支持向量机 怪胎范式 脑电图 脑-机接口 随机森林 事件相关电位 人工智能 计算机科学 模式识别(心理学) 感知 逻辑回归 心理学 语音识别 机器学习 神经科学
作者
Hoda Jalalkamali,Amirhossein Tajik,Rashid Hatami,Hossein Nezamabadi‐pour
出处
期刊:International Journal of Neuroscience [Informa]
卷期号:134 (4): 372-380 被引量:1
标识
DOI:10.1080/00207454.2022.2103413
摘要

Background and objective: Time perception is essential for the precise performance of many of our activities and the coordination between different modalities. But it is distorted in many diseases and disorders. Event-related potentials (ERP) have long been used to understand better how the human brain perceives time, but machine learning methods have rarely been used to detect a person's time perception from his/her ERPs.Methods: In this study, EEG signals of the individuals were recorded while performing an auditory oddball time discrimination task. After features were extracted from ERPs, data balancing, and feature selection, machine learning models were used to distinguish between the oddball durations of 400 ms and 600 ms from standard durations of 500 ms. ERP results showed that the P3 evoked by the 600 ms oddball stimuli appeared about 200 ms later than that of the 400 ms oddball tones. Classification performance results indicated that support vector machine (SVM) outperformed K-nearest neighbors (KNN), Random Forest, and Logistic regression models.Results: The accuracy of SVM was 91.24, 92.96, and 89.9 for the three used labeling modes, respectively. Another important finding was that most features selected for classification were in the P3 component range, supporting the observed significant effect of duration on the P3. Although all N1, P2, N2, and P3 components contributed to detecting the desired durations.Conclusion: Therefore, results of this study suggest the P3 component as a potential candidate to detect sub-second periods in future researches on brain-computer interface (BCI) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sci大户完成签到,获得积分10
刚刚
刚刚
HG20220101完成签到 ,获得积分10
1秒前
2秒前
flj发布了新的文献求助10
2秒前
小1贤发布了新的文献求助10
2秒前
zhao发布了新的文献求助10
3秒前
3秒前
3秒前
口香糖探长完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
SciGPT应助kmy采纳,获得10
5秒前
5秒前
wang发布了新的文献求助10
6秒前
6秒前
汤糖糖完成签到 ,获得积分10
6秒前
7秒前
希望天下0贩的0应助aaaaa采纳,获得10
7秒前
称心的翠绿完成签到,获得积分10
7秒前
001399发布了新的文献求助10
7秒前
吴世勋fans发布了新的文献求助10
7秒前
PhD完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
张艳坤完成签到 ,获得积分10
8秒前
dynamoo应助乐正映雁采纳,获得10
8秒前
zy完成签到,获得积分10
8秒前
Orange应助1649639951qq采纳,获得20
8秒前
ll发布了新的文献求助10
8秒前
微笑的觅荷完成签到,获得积分10
9秒前
科目三应助wzy采纳,获得10
9秒前
9秒前
锣大炮发布了新的文献求助10
10秒前
10秒前
留白发布了新的文献求助10
10秒前
聪明的招牌完成签到,获得积分10
10秒前
Yu完成签到 ,获得积分10
10秒前
geold发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516