Detecting how time is subjectively perceived based on event-related potentials (ERPs): a machine learning approach

支持向量机 怪胎范式 脑电图 脑-机接口 随机森林 事件相关电位 人工智能 计算机科学 模式识别(心理学) 感知 逻辑回归 心理学 语音识别 机器学习 神经科学
作者
Hoda Jalalkamali,Amirhossein Tajik,Rashid Hatami,Hossein Nezamabadi‐pour
出处
期刊:International Journal of Neuroscience [Taylor & Francis]
卷期号:134 (4): 372-380 被引量:1
标识
DOI:10.1080/00207454.2022.2103413
摘要

Background and objective: Time perception is essential for the precise performance of many of our activities and the coordination between different modalities. But it is distorted in many diseases and disorders. Event-related potentials (ERP) have long been used to understand better how the human brain perceives time, but machine learning methods have rarely been used to detect a person's time perception from his/her ERPs.Methods: In this study, EEG signals of the individuals were recorded while performing an auditory oddball time discrimination task. After features were extracted from ERPs, data balancing, and feature selection, machine learning models were used to distinguish between the oddball durations of 400 ms and 600 ms from standard durations of 500 ms. ERP results showed that the P3 evoked by the 600 ms oddball stimuli appeared about 200 ms later than that of the 400 ms oddball tones. Classification performance results indicated that support vector machine (SVM) outperformed K-nearest neighbors (KNN), Random Forest, and Logistic regression models.Results: The accuracy of SVM was 91.24, 92.96, and 89.9 for the three used labeling modes, respectively. Another important finding was that most features selected for classification were in the P3 component range, supporting the observed significant effect of duration on the P3. Although all N1, P2, N2, and P3 components contributed to detecting the desired durations.Conclusion: Therefore, results of this study suggest the P3 component as a potential candidate to detect sub-second periods in future researches on brain-computer interface (BCI) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助ZZY采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
jerry完成签到,获得积分10
1秒前
1秒前
权归尘发布了新的文献求助10
2秒前
搜集达人应助Natua采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
panpan发布了新的文献求助10
5秒前
5秒前
42blink发布了新的文献求助10
5秒前
6秒前
mjq发布了新的文献求助10
7秒前
ming完成签到,获得积分10
8秒前
彭于晏应助Ki_Ayasato采纳,获得10
9秒前
9秒前
9秒前
12完成签到,获得积分10
10秒前
10秒前
Qian发布了新的文献求助30
10秒前
ZZY发布了新的文献求助10
12秒前
12秒前
月下独酌发布了新的文献求助10
12秒前
干净雨安发布了新的文献求助10
13秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
TiAmo完成签到,获得积分20
17秒前
sopha完成签到,获得积分10
18秒前
浮游应助甜甜花卷采纳,获得10
18秒前
将军完成签到,获得积分10
19秒前
汤泡泡发布了新的文献求助10
21秒前
25秒前
海洋关注了科研通微信公众号
25秒前
大个应助某亮采纳,获得10
25秒前
李爱国应助敏感的明杰采纳,获得10
25秒前
贾克斯完成签到,获得积分10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125340
求助须知:如何正确求助?哪些是违规求助? 4329194
关于积分的说明 13490551
捐赠科研通 4164032
什么是DOI,文献DOI怎么找? 2282685
邀请新用户注册赠送积分活动 1283829
关于科研通互助平台的介绍 1223099