Detecting how time is subjectively perceived based on event-related potentials (ERPs): a machine learning approach

支持向量机 怪胎范式 脑电图 脑-机接口 随机森林 事件相关电位 人工智能 计算机科学 模式识别(心理学) 感知 逻辑回归 心理学 语音识别 机器学习 神经科学
作者
Hoda Jalalkamali,Amirhossein Tajik,Rashid Hatami,Hossein Nezamabadi‐pour
出处
期刊:International Journal of Neuroscience [Taylor & Francis]
卷期号:134 (4): 372-380 被引量:1
标识
DOI:10.1080/00207454.2022.2103413
摘要

Background and objective: Time perception is essential for the precise performance of many of our activities and the coordination between different modalities. But it is distorted in many diseases and disorders. Event-related potentials (ERP) have long been used to understand better how the human brain perceives time, but machine learning methods have rarely been used to detect a person's time perception from his/her ERPs.Methods: In this study, EEG signals of the individuals were recorded while performing an auditory oddball time discrimination task. After features were extracted from ERPs, data balancing, and feature selection, machine learning models were used to distinguish between the oddball durations of 400 ms and 600 ms from standard durations of 500 ms. ERP results showed that the P3 evoked by the 600 ms oddball stimuli appeared about 200 ms later than that of the 400 ms oddball tones. Classification performance results indicated that support vector machine (SVM) outperformed K-nearest neighbors (KNN), Random Forest, and Logistic regression models.Results: The accuracy of SVM was 91.24, 92.96, and 89.9 for the three used labeling modes, respectively. Another important finding was that most features selected for classification were in the P3 component range, supporting the observed significant effect of duration on the P3. Although all N1, P2, N2, and P3 components contributed to detecting the desired durations.Conclusion: Therefore, results of this study suggest the P3 component as a potential candidate to detect sub-second periods in future researches on brain-computer interface (BCI) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
慕青应助亗sui采纳,获得10
3秒前
3秒前
4秒前
徐rl发布了新的文献求助10
4秒前
mypang完成签到,获得积分10
4秒前
4秒前
KKIII发布了新的文献求助30
5秒前
5秒前
6秒前
CodeCraft应助HanZhang采纳,获得10
6秒前
吴世勋完成签到,获得积分10
6秒前
6秒前
852应助wwwy采纳,获得10
6秒前
7秒前
彩色冥幽发布了新的文献求助10
7秒前
7秒前
8秒前
充电宝应助llll采纳,获得10
8秒前
传奇3应助mypang采纳,获得10
8秒前
zhonglv7应助宋宋采纳,获得10
8秒前
小帅发布了新的文献求助10
10秒前
木易发布了新的文献求助20
10秒前
yliaoyou完成签到,获得积分10
10秒前
11秒前
小七完成签到,获得积分10
11秒前
机智小虾米完成签到,获得积分10
11秒前
麦克尔发布了新的文献求助10
11秒前
cloud发布了新的文献求助10
11秒前
喵喵张发布了新的文献求助10
12秒前
123关闭了123文献求助
12秒前
12秒前
14秒前
14秒前
11111发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879