An Approach Based on Deep Learning for Tree Species Classification in LiDAR Data Acquired in Mixed Forest

激光雷达 点云 树(集合论) 计算机科学 遥感 测距 牙冠(牙科) 人工智能 深度学习 模式识别(心理学) 数学 地理 医学 电信 数学分析 牙科
作者
Daniele Marinelli,Claudia Paris,Lorenzo Bruzzone
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:13
标识
DOI:10.1109/lgrs.2022.3181680
摘要

This letter proposes a novel method based on Deep Learning (DL) to forest species classification in airborne Light Detection and Ranging (LiDAR) data. Differently from the state-of- the-art approaches, the proposed method: (1) does not assume any prior knowledge either on the forest to be classified or on the sensor used to acquire the LiDAR data, and (2) can be applied to heterogeneous forest characterized by mixed species. First, the 3D point cloud of each individual tree is decomposed into 8 angular sectors to generate a multi-slices representation of the vertical structure of the tree. This representation models the foliage, the stem and the branches of the tree crown as well as depicts the internal and external crown properties. Then, a Multi-View CNN (MVCNN) DL automatically extracts features used to discriminate the different tree species. This network is pre-trained on the massive ImageNet database, thus guaranteeing fast convergence with a relatively small number of ground reference data. Experiments were carried out on high density airborne LiDAR data collected over a multi-layer multi-age forest characterized by four conifers and three broadleaf species. The proposed method outperformed the state-of-the-art approaches increasing the Overall Accuracy (OA) up to 16% and 18.9% compared to a DL and a shallow tree species classification methods, respectively. When applied to coniferous or broadlaef forests, the proposed method showed an increase of OA 10.1% and 15.9% (for conifers), and 9.5% and 21.6% (for broadleafs) compared to the DL and shallow methods, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjx完成签到 ,获得积分10
刚刚
虾球完成签到,获得积分20
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
小冬腊月完成签到,获得积分10
1秒前
1秒前
1秒前
hhh发布了新的文献求助10
2秒前
2秒前
精明人达发布了新的文献求助10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
Survive完成签到,获得积分10
3秒前
脑洞疼应助止咳宝采纳,获得10
3秒前
Desamin发布了新的文献求助10
4秒前
张国麒完成签到 ,获得积分10
4秒前
4秒前
4秒前
李爱国应助yao chen采纳,获得10
5秒前
星星发布了新的文献求助10
5秒前
Huang发布了新的文献求助10
6秒前
Huang发布了新的文献求助10
6秒前
万能图书馆应助浮浮世世采纳,获得10
6秒前
Huang发布了新的文献求助10
6秒前
Huang发布了新的文献求助10
6秒前
Huang发布了新的文献求助10
6秒前
鹿笙完成签到,获得积分20
6秒前
Huang发布了新的文献求助10
6秒前
Huang发布了新的文献求助10
6秒前
Huang发布了新的文献求助10
6秒前
pan完成签到,获得积分10
6秒前
CL837809486发布了新的文献求助10
6秒前
醉熏的芷卉完成签到,获得积分10
6秒前
不去明知山完成签到 ,获得积分10
6秒前
纯真凌晴发布了新的文献求助10
7秒前
zp4发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271