A Hybrid Data-Driven Method for State-of-Charge Estimation of Lithium-Ion Batteries

荷电状态 均方误差 计算机科学 颗粒过滤器 电压 电池(电) 噪音(视频) 功率(物理) 电子工程 算法 滤波器(信号处理) 控制理论(社会学) 实时计算 工程类 人工智能 数学 电气工程 统计 物理 控制(管理) 量子力学 图像(数学) 计算机视觉
作者
Xiaodong Yan,Gongbo Zhou,Wei Wang,Ping Zhou,Zhenzhi He
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (16): 16263-16275 被引量:15
标识
DOI:10.1109/jsen.2022.3188845
摘要

As a portable energy storage system, lithium-ion batteries (LIBs) are widely used in wireless sensor networks, electric vehicles and other fields. To ensure the continuity of power supply, it is necessary to monitor the state of charge (SOC) of LIBs. However, due to the nonlinearity of battery operation, accurate SOC estimation has become a challenging task. In this paper, a SOC estimation method based on long-term short-term memory (LSTM) network and improved particle filter (IPF) is proposed, which maps the easily observed voltage, current and temperature to the target SOC. Firstly, through a layer of the LSTM network, the timing characteristics of the data are fully utilized to obtain the SOC variation trend of LIBs. Then, the noise variance adaptive algorithm and particle distribution optimization algorithm are introduced to improve the standard particle filter (PF). On this basis, the estimation results of the LSTM network are optimized by IPF. In addition, the performance of the proposed LSTM-IPF method is compared with other methods. The results show that the estimation performance of the proposed model is excellent, and the root mean squared error (RMSE) and maximum error (MAX) are controlled below 1% and 2% respectively, which meets the requirements of SOC estimation and verifies the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助安康采纳,获得10
刚刚
Ll_l完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
sedrakyan发布了新的文献求助10
1秒前
2秒前
2秒前
orixero应助John采纳,获得10
2秒前
whisper完成签到,获得积分10
2秒前
lalala发布了新的文献求助10
2秒前
Akim应助刘xiansheng采纳,获得10
2秒前
领导范儿应助房恩羽采纳,获得10
3秒前
Emma完成签到,获得积分20
3秒前
ficus_min发布了新的文献求助10
3秒前
微凉发布了新的文献求助20
3秒前
在水一方应助敬之采纳,获得10
4秒前
5秒前
研友_VZG7GZ应助fantastic采纳,获得10
6秒前
杨忆枫发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
传奇3应助于文志采纳,获得10
8秒前
日富一日发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
小南风完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
xue完成签到,获得积分10
10秒前
11秒前
11秒前
天天快乐应助马子妍采纳,获得10
11秒前
11秒前
11秒前
12秒前
12秒前
wheat完成签到,获得积分10
12秒前
小南风发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894