Zincophilic Polymer Semiconductor as Multifunctional Protective Layer Enables Dendrite-Free Zinc Metal Anodes

枝晶(数学) 材料科学 图层(电子) 阳极 半导体 金属 聚合物 纳米技术 冶金 光电子学 复合材料 化学 电极 几何学 物理化学 数学
作者
Jiangmin Jiang,Zhenghui Pan,Jiaren Yuan,Jun Shan,Chenglong Chen,Shaopeng Li,Hai Xu,Yaxin Chen,Quanchao Zhuang,Zhicheng Ju,Hui Dou,Xiaogang Zhang,John Wang
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4167597
摘要

Zinc (Zn) metal is considered as one of the most promising anodes for aqueous zinc-ion batteries due to its high theoretical capacity, low cost, and environmental benignity. However, the uncontrolled dendrite growth and parasitic side-reactions lead to low Coulombic efficiency and limited lifespan, severely affecting their applications. Herein, a stable and robust g-C3N4 is constructed on the surface of metallic Zn anode (g-C3N4@Zn), serving as a multifunctional protective layer. The nitrogen (N)-rich g-C3N4 layer exhibits inherent zincophilic properties, in which zinc ions can be bonded with N to form Zn-N bonds, resulting in homogenous nucleation and inhibiting dendrite growth. In addition, the hydrogen evolution reaction and the formation of by-products can be effectively relieved, which are attributed to the polymer layer of blocking water from the Zn surface. More importantly, in-situ optical real-time monitoring, density functional theory calculations, and molecular dynamic simulations demonstrate the effectiveness of the zincophilic g-C3N4 layer in improving stability. As expected, the g-C3N4@Zn anode achieves a remarkable cycling lifespan of around 2900 h (up to four months) in symmetric cells, together with high cycling stability (1000 cycles) for g-C3N4@Zn//V3O7 H2O full batteries. Significantly, the new finding of the zincophilic g-C3N4 protective layer points to an alternative effective pathway to regulate Zn metal anodes for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
111发布了新的文献求助30
1秒前
落寞的咖啡完成签到,获得积分10
3秒前
4秒前
月桂桂完成签到,获得积分10
6秒前
所所应助冉徐凤采纳,获得10
8秒前
Eva完成签到 ,获得积分10
8秒前
8秒前
12秒前
12秒前
未来无限完成签到,获得积分10
13秒前
14秒前
Hony132完成签到,获得积分10
14秒前
16秒前
深情安青应助迷人问兰采纳,获得10
17秒前
17秒前
JamesPei应助kafei采纳,获得30
18秒前
毛儿豆儿发布了新的文献求助10
18秒前
阿梨完成签到 ,获得积分10
18秒前
18秒前
19秒前
19秒前
夹生土豆丝完成签到 ,获得积分10
19秒前
丘比特应助hero采纳,获得10
21秒前
21秒前
jiao发布了新的文献求助20
22秒前
22秒前
Jasper应助coco采纳,获得10
22秒前
XFan发布了新的文献求助10
22秒前
希望天下0贩的0应助xmhxpz采纳,获得10
23秒前
LHT发布了新的文献求助10
24秒前
24秒前
24秒前
领导范儿应助Liolsy采纳,获得10
25秒前
25秒前
优美的风完成签到,获得积分10
25秒前
Apollo完成签到,获得积分10
25秒前
挪威发布了新的文献求助20
28秒前
ezra许完成签到 ,获得积分10
29秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952796
求助须知:如何正确求助?哪些是违规求助? 3498228
关于积分的说明 11091005
捐赠科研通 3228793
什么是DOI,文献DOI怎么找? 1785139
邀请新用户注册赠送积分活动 869145
科研通“疑难数据库(出版商)”最低求助积分说明 801350