亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved approach of dry snow density estimation using C-band synthetic aperture radar data

合成孔径雷达 遥感 地形 散射 环境科学 雷达 地质学 气象学 地理 计算机科学 地貌学 物理 光学 地图学 电信
作者
Min Li,Pengfeng Xiao,Xueliang Zhang,Feng Xia,Liujun Zhu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:191: 49-67 被引量:1
标识
DOI:10.1016/j.isprsjprs.2022.07.002
摘要

Snow density is one of the important indicators of snow cover hydrological potential. The application of existing algorithms for retrieving dry snow density using synthetic aperture radar (SAR) data is limited by single scattering mechanism, small terrain fluctuation or narrow incidence angle range. In the study, an improved approach was proposed to retrieve dry snow density from C-band SAR data with a wide range of roughness and local incidence angles. Both the snow-ground interface scattering and volume scattering were considered in the approach. First, the relationship between the backscattering at the snow-ground interface and relative permittivity was obtained based on simulation using the Advanced Integral Equation Model (AIEM) and regression analysis. Then the classical relationship between the volume backscattering and relative permittivity obtained by the first-order volume scattering model was incorporated into the approach. For comparison, the coefficients of the Shi algorithm were redefined by the AIEM model and regression analysis, and the Shi algorithm initially developed for L-band was modified for C-band. In experiments, the RADARSAT-2 data obtained in the Manasi River Basin on December 12–17, 2013 and the C-band GaoFen-3 data obtained in the Kelan River Basin on January 17, 2018 were selected to validate the applicability of the proposed approach under different conditions. The inversion results in the Manasi River Basin using the proposed approach, Singh algorithm, and modified Shi algorithm were compared. The results in the Manasi River Basin show that the correlation coefficients (Rs) between the measured and estimated dry snow density are 0.868, 0.694, and 0.653 for the three methods, respectively. The root mean square errors (RMSEs) are 31.1 kg m−3, 59.1 kg m−3, and 64.7 kg m−3, respectively, and the mean relative errors (MREs) are 12.9%, 21.9%, and 25.5%, respectively. The corresponding R, RMSE, and MRE in the Kelan River Basin using the proposed approach are 0.717, 57.2 kg m−3, and 27.1%, respectively. The results prove that the dry snow density under different C-band SAR data and different areas can be effectively retrieved using the proposed approach superior to the other two algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
charliechen完成签到 ,获得积分10
26秒前
草木完成签到 ,获得积分10
45秒前
桐桐应助111111采纳,获得10
59秒前
研友_LNBgkL发布了新的文献求助10
1分钟前
忍冬发布了新的文献求助10
1分钟前
1分钟前
领导范儿应助忍冬采纳,获得10
1分钟前
111111发布了新的文献求助10
1分钟前
852应助爱上写文章采纳,获得10
1分钟前
1分钟前
缓慢珠发布了新的文献求助10
1分钟前
斯文败类应助HenryChan采纳,获得10
1分钟前
大模型应助缓慢珠采纳,获得10
1分钟前
科目三应助byq采纳,获得10
1分钟前
雁丘完成签到 ,获得积分10
1分钟前
shentaii完成签到,获得积分10
1分钟前
研友_LNBgkL完成签到,获得积分10
1分钟前
缓慢珠完成签到,获得积分10
2分钟前
huxuehong完成签到 ,获得积分10
2分钟前
窝窝窝书完成签到,获得积分10
2分钟前
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
kyokyoro完成签到,获得积分10
3分钟前
大胆的碧菡完成签到,获得积分10
3分钟前
Lucas应助zhairx采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
HJL发布了新的文献求助10
4分钟前
4分钟前
ZaZa完成签到,获得积分10
4分钟前
byq发布了新的文献求助10
4分钟前
Jayzie完成签到 ,获得积分10
4分钟前
4分钟前
慕青应助科研通管家采纳,获得10
4分钟前
打打应助科研通管家采纳,获得10
4分钟前
LPPQBB应助科研通管家采纳,获得30
4分钟前
小小心愿完成签到,获得积分20
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356819
求助须知:如何正确求助?哪些是违规求助? 4488529
关于积分的说明 13972265
捐赠科研通 4389506
什么是DOI,文献DOI怎么找? 2411618
邀请新用户注册赠送积分活动 1404132
关于科研通互助平台的介绍 1378190