An improved approach of dry snow density estimation using C-band synthetic aperture radar data

合成孔径雷达 遥感 地形 散射 环境科学 雷达 地质学 气象学 地理 计算机科学 地貌学 物理 光学 电信 地图学
作者
Min Li,Pengfeng Xiao,Xueliang Zhang,Feng Xia,Liujun Zhu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:191: 49-67 被引量:1
标识
DOI:10.1016/j.isprsjprs.2022.07.002
摘要

Snow density is one of the important indicators of snow cover hydrological potential. The application of existing algorithms for retrieving dry snow density using synthetic aperture radar (SAR) data is limited by single scattering mechanism, small terrain fluctuation or narrow incidence angle range. In the study, an improved approach was proposed to retrieve dry snow density from C-band SAR data with a wide range of roughness and local incidence angles. Both the snow-ground interface scattering and volume scattering were considered in the approach. First, the relationship between the backscattering at the snow-ground interface and relative permittivity was obtained based on simulation using the Advanced Integral Equation Model (AIEM) and regression analysis. Then the classical relationship between the volume backscattering and relative permittivity obtained by the first-order volume scattering model was incorporated into the approach. For comparison, the coefficients of the Shi algorithm were redefined by the AIEM model and regression analysis, and the Shi algorithm initially developed for L-band was modified for C-band. In experiments, the RADARSAT-2 data obtained in the Manasi River Basin on December 12–17, 2013 and the C-band GaoFen-3 data obtained in the Kelan River Basin on January 17, 2018 were selected to validate the applicability of the proposed approach under different conditions. The inversion results in the Manasi River Basin using the proposed approach, Singh algorithm, and modified Shi algorithm were compared. The results in the Manasi River Basin show that the correlation coefficients (Rs) between the measured and estimated dry snow density are 0.868, 0.694, and 0.653 for the three methods, respectively. The root mean square errors (RMSEs) are 31.1 kg m−3, 59.1 kg m−3, and 64.7 kg m−3, respectively, and the mean relative errors (MREs) are 12.9%, 21.9%, and 25.5%, respectively. The corresponding R, RMSE, and MRE in the Kelan River Basin using the proposed approach are 0.717, 57.2 kg m−3, and 27.1%, respectively. The results prove that the dry snow density under different C-band SAR data and different areas can be effectively retrieved using the proposed approach superior to the other two algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
菲菲鱼丸完成签到,获得积分10
刚刚
1秒前
1秒前
岛屿完成签到,获得积分20
3秒前
komisan完成签到 ,获得积分10
4秒前
王墩墩完成签到 ,获得积分10
5秒前
小可爱发布了新的文献求助10
5秒前
江蹇发布了新的文献求助10
5秒前
zhang123发布了新的文献求助30
6秒前
7秒前
保持客气发布了新的文献求助10
7秒前
张童鞋完成签到,获得积分10
8秒前
ding应助Tree采纳,获得10
8秒前
LCC完成签到 ,获得积分10
8秒前
不懈奋进应助要减肥半邪采纳,获得30
9秒前
Aiven完成签到,获得积分10
9秒前
丘比特应助努力的学采纳,获得10
10秒前
FashionBoy应助可靠棒棒糖采纳,获得10
11秒前
mangle完成签到,获得积分10
11秒前
Zenobia完成签到,获得积分20
12秒前
江蹇完成签到,获得积分10
13秒前
保持客气完成签到,获得积分10
14秒前
hetao286完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
19秒前
19秒前
20秒前
NIU完成签到,获得积分10
20秒前
20秒前
刘欢发布了新的文献求助10
21秒前
酷炫觅松发布了新的文献求助10
21秒前
22秒前
上官若男应助酷酷忆安采纳,获得10
22秒前
研友_nPxRRn发布了新的文献求助10
23秒前
老实黄蜂完成签到,获得积分10
23秒前
24秒前
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155971
求助须知:如何正确求助?哪些是违规求助? 2807318
关于积分的说明 7872715
捐赠科研通 2465696
什么是DOI,文献DOI怎么找? 1312291
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905