An improved approach of dry snow density estimation using C-band synthetic aperture radar data

合成孔径雷达 遥感 地形 散射 环境科学 雷达 地质学 气象学 地理 计算机科学 地貌学 物理 光学 电信 地图学
作者
Min Li,Pengfeng Xiao,Xueliang Zhang,Feng Xia,Liujun Zhu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:191: 49-67 被引量:1
标识
DOI:10.1016/j.isprsjprs.2022.07.002
摘要

Snow density is one of the important indicators of snow cover hydrological potential. The application of existing algorithms for retrieving dry snow density using synthetic aperture radar (SAR) data is limited by single scattering mechanism, small terrain fluctuation or narrow incidence angle range. In the study, an improved approach was proposed to retrieve dry snow density from C-band SAR data with a wide range of roughness and local incidence angles. Both the snow-ground interface scattering and volume scattering were considered in the approach. First, the relationship between the backscattering at the snow-ground interface and relative permittivity was obtained based on simulation using the Advanced Integral Equation Model (AIEM) and regression analysis. Then the classical relationship between the volume backscattering and relative permittivity obtained by the first-order volume scattering model was incorporated into the approach. For comparison, the coefficients of the Shi algorithm were redefined by the AIEM model and regression analysis, and the Shi algorithm initially developed for L-band was modified for C-band. In experiments, the RADARSAT-2 data obtained in the Manasi River Basin on December 12–17, 2013 and the C-band GaoFen-3 data obtained in the Kelan River Basin on January 17, 2018 were selected to validate the applicability of the proposed approach under different conditions. The inversion results in the Manasi River Basin using the proposed approach, Singh algorithm, and modified Shi algorithm were compared. The results in the Manasi River Basin show that the correlation coefficients (Rs) between the measured and estimated dry snow density are 0.868, 0.694, and 0.653 for the three methods, respectively. The root mean square errors (RMSEs) are 31.1 kg m−3, 59.1 kg m−3, and 64.7 kg m−3, respectively, and the mean relative errors (MREs) are 12.9%, 21.9%, and 25.5%, respectively. The corresponding R, RMSE, and MRE in the Kelan River Basin using the proposed approach are 0.717, 57.2 kg m−3, and 27.1%, respectively. The results prove that the dry snow density under different C-band SAR data and different areas can be effectively retrieved using the proposed approach superior to the other two algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助水123采纳,获得10
刚刚
爆米花应助Rubia采纳,获得10
刚刚
刚刚
1秒前
Dr终年发布了新的文献求助10
1秒前
爆米花应助wylwyl采纳,获得10
1秒前
GXY发布了新的文献求助10
1秒前
传奇3应助淡淡的鸽子采纳,获得10
1秒前
2秒前
sjy发布了新的文献求助10
2秒前
3秒前
3秒前
缥缈荠关注了科研通微信公众号
3秒前
Oliver完成签到 ,获得积分10
4秒前
自信鞯完成签到,获得积分10
4秒前
4秒前
4秒前
ljh发布了新的文献求助10
4秒前
忐忑的黄豆完成签到,获得积分10
6秒前
fionadong发布了新的文献求助10
6秒前
汉堡包应助坚果采纳,获得10
6秒前
6秒前
6秒前
breeze发布了新的文献求助10
7秒前
善学以致用应助小雨采纳,获得10
7秒前
chx123发布了新的文献求助10
7秒前
xixi发布了新的文献求助10
8秒前
小付发布了新的文献求助10
8秒前
Oscillator发布了新的文献求助10
9秒前
笛在月明楼完成签到,获得积分10
9秒前
Dr终年完成签到,获得积分10
10秒前
俞晓发布了新的文献求助10
10秒前
10秒前
cw发布了新的文献求助10
10秒前
10秒前
风趣惜灵完成签到,获得积分10
11秒前
酷波er应助12345采纳,获得10
11秒前
12秒前
屈屈发布了新的文献求助50
12秒前
小号完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601362
求助须知:如何正确求助?哪些是违规求助? 4686881
关于积分的说明 14846604
捐赠科研通 4680822
什么是DOI,文献DOI怎么找? 2539355
邀请新用户注册赠送积分活动 1506197
关于科研通互助平台的介绍 1471293