An improved approach of dry snow density estimation using C-band synthetic aperture radar data

合成孔径雷达 遥感 地形 散射 环境科学 雷达 地质学 气象学 地理 计算机科学 地貌学 物理 光学 电信 地图学
作者
Min Li,Pengfeng Xiao,Xueliang Zhang,Feng Xia,Liujun Zhu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:191: 49-67 被引量:1
标识
DOI:10.1016/j.isprsjprs.2022.07.002
摘要

Snow density is one of the important indicators of snow cover hydrological potential. The application of existing algorithms for retrieving dry snow density using synthetic aperture radar (SAR) data is limited by single scattering mechanism, small terrain fluctuation or narrow incidence angle range. In the study, an improved approach was proposed to retrieve dry snow density from C-band SAR data with a wide range of roughness and local incidence angles. Both the snow-ground interface scattering and volume scattering were considered in the approach. First, the relationship between the backscattering at the snow-ground interface and relative permittivity was obtained based on simulation using the Advanced Integral Equation Model (AIEM) and regression analysis. Then the classical relationship between the volume backscattering and relative permittivity obtained by the first-order volume scattering model was incorporated into the approach. For comparison, the coefficients of the Shi algorithm were redefined by the AIEM model and regression analysis, and the Shi algorithm initially developed for L-band was modified for C-band. In experiments, the RADARSAT-2 data obtained in the Manasi River Basin on December 12–17, 2013 and the C-band GaoFen-3 data obtained in the Kelan River Basin on January 17, 2018 were selected to validate the applicability of the proposed approach under different conditions. The inversion results in the Manasi River Basin using the proposed approach, Singh algorithm, and modified Shi algorithm were compared. The results in the Manasi River Basin show that the correlation coefficients (Rs) between the measured and estimated dry snow density are 0.868, 0.694, and 0.653 for the three methods, respectively. The root mean square errors (RMSEs) are 31.1 kg m−3, 59.1 kg m−3, and 64.7 kg m−3, respectively, and the mean relative errors (MREs) are 12.9%, 21.9%, and 25.5%, respectively. The corresponding R, RMSE, and MRE in the Kelan River Basin using the proposed approach are 0.717, 57.2 kg m−3, and 27.1%, respectively. The results prove that the dry snow density under different C-band SAR data and different areas can be effectively retrieved using the proposed approach superior to the other two algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
josie完成签到 ,获得积分10
刚刚
llll完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
韭菜发布了新的文献求助10
刚刚
外向的斑马完成签到 ,获得积分10
1秒前
村长热爱美丽完成签到 ,获得积分10
3秒前
尹尹关注了科研通微信公众号
5秒前
呆呆完成签到 ,获得积分10
6秒前
xianyaoz完成签到 ,获得积分0
13秒前
杨远杰完成签到,获得积分10
14秒前
蓝桉完成签到 ,获得积分10
14秒前
JuliaWang完成签到 ,获得积分10
21秒前
无限的含羞草完成签到,获得积分10
22秒前
八二力完成签到 ,获得积分10
26秒前
韭菜发布了新的文献求助10
29秒前
情怀应助科研通管家采纳,获得30
32秒前
water应助科研通管家采纳,获得10
32秒前
JamesPei应助科研通管家采纳,获得10
32秒前
2012csc完成签到 ,获得积分0
34秒前
风清扬应助韭菜采纳,获得10
35秒前
WSY完成签到 ,获得积分10
36秒前
虞无声发布了新的文献求助10
37秒前
执着新蕾完成签到,获得积分10
39秒前
Vivian完成签到 ,获得积分10
42秒前
666完成签到 ,获得积分10
44秒前
49秒前
量子星尘发布了新的文献求助10
52秒前
蔡从安完成签到,获得积分10
52秒前
奥雷里亚诺完成签到 ,获得积分10
52秒前
不呆完成签到 ,获得积分10
53秒前
Cheung2121发布了新的文献求助30
53秒前
画龙完成签到,获得积分10
54秒前
韭菜完成签到,获得积分20
55秒前
Owen应助Cheung2121采纳,获得10
58秒前
爱学习的小李完成签到 ,获得积分10
1分钟前
若水完成签到 ,获得积分10
1分钟前
SYLH应助tian采纳,获得10
1分钟前
脑洞疼应助tian采纳,获得10
1分钟前
Ava应助tian采纳,获得10
1分钟前
领导范儿应助tian采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022