An improved approach of dry snow density estimation using C-band synthetic aperture radar data

合成孔径雷达 遥感 地形 散射 环境科学 雷达 地质学 气象学 地理 计算机科学 地貌学 物理 光学 电信 地图学
作者
Min Li,Pengfeng Xiao,Xueliang Zhang,Feng Xia,Liujun Zhu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:191: 49-67 被引量:1
标识
DOI:10.1016/j.isprsjprs.2022.07.002
摘要

Snow density is one of the important indicators of snow cover hydrological potential. The application of existing algorithms for retrieving dry snow density using synthetic aperture radar (SAR) data is limited by single scattering mechanism, small terrain fluctuation or narrow incidence angle range. In the study, an improved approach was proposed to retrieve dry snow density from C-band SAR data with a wide range of roughness and local incidence angles. Both the snow-ground interface scattering and volume scattering were considered in the approach. First, the relationship between the backscattering at the snow-ground interface and relative permittivity was obtained based on simulation using the Advanced Integral Equation Model (AIEM) and regression analysis. Then the classical relationship between the volume backscattering and relative permittivity obtained by the first-order volume scattering model was incorporated into the approach. For comparison, the coefficients of the Shi algorithm were redefined by the AIEM model and regression analysis, and the Shi algorithm initially developed for L-band was modified for C-band. In experiments, the RADARSAT-2 data obtained in the Manasi River Basin on December 12–17, 2013 and the C-band GaoFen-3 data obtained in the Kelan River Basin on January 17, 2018 were selected to validate the applicability of the proposed approach under different conditions. The inversion results in the Manasi River Basin using the proposed approach, Singh algorithm, and modified Shi algorithm were compared. The results in the Manasi River Basin show that the correlation coefficients (Rs) between the measured and estimated dry snow density are 0.868, 0.694, and 0.653 for the three methods, respectively. The root mean square errors (RMSEs) are 31.1 kg m−3, 59.1 kg m−3, and 64.7 kg m−3, respectively, and the mean relative errors (MREs) are 12.9%, 21.9%, and 25.5%, respectively. The corresponding R, RMSE, and MRE in the Kelan River Basin using the proposed approach are 0.717, 57.2 kg m−3, and 27.1%, respectively. The results prove that the dry snow density under different C-band SAR data and different areas can be effectively retrieved using the proposed approach superior to the other two algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助楠楠采纳,获得10
刚刚
刚刚
Qiao应助耍酷曼雁采纳,获得30
1秒前
阳佟半仙发布了新的文献求助10
1秒前
乐观的海雪完成签到,获得积分20
1秒前
2秒前
2秒前
miao发布了新的文献求助10
2秒前
moneymoney完成签到,获得积分10
2秒前
清新的Q完成签到,获得积分10
3秒前
3秒前
高高高完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
xiaochuan完成签到,获得积分10
5秒前
尊敬的扬发布了新的文献求助10
5秒前
文静的翠安完成签到,获得积分10
5秒前
猫猫发布了新的文献求助10
5秒前
UU完成签到,获得积分10
5秒前
善良身影发布了新的文献求助10
5秒前
6秒前
DEREK发布了新的文献求助10
6秒前
xmz完成签到,获得积分10
6秒前
李太白云游四海完成签到,获得积分10
6秒前
Zgrey完成签到,获得积分10
6秒前
烂漫的汲完成签到,获得积分10
7秒前
jingyi完成签到,获得积分10
7秒前
石石刘发布了新的文献求助10
7秒前
yang完成签到,获得积分10
7秒前
zhaofw完成签到,获得积分10
8秒前
甜酒发布了新的文献求助10
8秒前
8秒前
wyl发布了新的文献求助10
8秒前
传奇3应助ty采纳,获得10
8秒前
8秒前
willow完成签到,获得积分10
8秒前
9秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968934
求助须知:如何正确求助?哪些是违规求助? 3513835
关于积分的说明 11170238
捐赠科研通 3249167
什么是DOI,文献DOI怎么找? 1794650
邀请新用户注册赠送积分活动 875278
科研通“疑难数据库(出版商)”最低求助积分说明 804755