The multilabel fault diagnosis model of bearing based on integrated convolutional neural network and gated recurrent unit

计算机科学 卷积神经网络 断层(地质) 人工智能 方位(导航) 模式识别(心理学) 深度学习 相关性(法律) 人工神经网络 感知器 二元分类 数据挖掘 机器学习 支持向量机 地质学 地震学 法学 政治学
作者
Shanling Han,Shoudong Zhang,Yong Li,Long Chen
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald Publishing Limited]
卷期号:15 (3): 401-413 被引量:11
标识
DOI:10.1108/ijicc-08-2021-0153
摘要

Purpose Intelligent diagnosis of equipment faults can effectively avoid the shutdown caused by equipment faults and improve the safety of the equipment. At present, the diagnosis of various kinds of bearing fault information, such as the occurrence, location and degree of fault, can be carried out by machine learning and deep learning and realized through the multiclassification method. However, the multiclassification method is not perfect in distinguishing similar fault categories and visual representation of fault information. To improve the above shortcomings, an end-to-end fault multilabel classification model is proposed for bearing fault diagnosis. Design/methodology/approach In this model, the labels of each bearing are binarized by using the binary relevance method. Then, the integrated convolutional neural network and gated recurrent unit (CNN-GRU) is employed to classify faults. Different from the general CNN networks, the CNN-GRU network adds multiple GRU layers after the convolutional layers and the pool layers. Findings The Paderborn University bearing dataset is utilized to demonstrate the practicability of the model. The experimental results show that the average accuracy in test set is 99.7%, and the proposed network is better than multilayer perceptron and CNN in fault diagnosis of bearing, and the multilabel classification method is superior to the multiclassification method. Consequently, the model can intuitively classify faults with higher accuracy. Originality/value The fault labels of each bearing are labeled according to the failure or not, the fault location, the damage mode and the damage degree, and then the binary value is obtained. The multilabel problem is transformed into a binary classification problem of each fault label by the binary relevance method, and the predicted probability value of each fault label is directly output in the output layer, which visually distinguishes different fault conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
宝宝发布了新的文献求助10
1秒前
烂漫的飞松完成签到,获得积分10
1秒前
1秒前
Ode发布了新的文献求助10
1秒前
2秒前
杨思睿完成签到,获得积分10
4秒前
4秒前
Hatexist应助仙都丽娜采纳,获得30
5秒前
欢檬应助安生采纳,获得10
5秒前
王铂然发布了新的文献求助10
7秒前
祥子的骆驼完成签到,获得积分10
7秒前
8秒前
SSY完成签到,获得积分10
8秒前
文静惜梦发布了新的文献求助10
8秒前
明理的天蓝完成签到,获得积分10
10秒前
秀丽的青发布了新的文献求助10
11秒前
11秒前
11秒前
15秒前
Nana发布了新的文献求助10
16秒前
17秒前
Ll完成签到,获得积分10
18秒前
fafamimireredo完成签到,获得积分10
18秒前
19秒前
fenghy完成签到,获得积分10
19秒前
20秒前
pyrene完成签到 ,获得积分10
21秒前
22秒前
ShengzhangLiu发布了新的文献求助10
24秒前
24秒前
confident发布了新的文献求助10
24秒前
24秒前
WSDSG发布了新的文献求助10
25秒前
26秒前
26秒前
我刷的烧饼贼亮完成签到 ,获得积分10
27秒前
岳相友完成签到,获得积分10
27秒前
28秒前
pss完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260505
捐赠科研通 3272347
什么是DOI,文献DOI怎么找? 1805732
邀请新用户注册赠送积分活动 882637
科研通“疑难数据库(出版商)”最低求助积分说明 809425