计算机科学
卷积神经网络
断层(地质)
人工智能
方位(导航)
模式识别(心理学)
深度学习
相关性(法律)
人工神经网络
感知器
二元分类
数据挖掘
机器学习
支持向量机
地质学
地震学
法学
政治学
作者
Shanling Han,Shoudong Zhang,Yong Li,Long Chen
出处
期刊:International Journal of Intelligent Computing and Cybernetics
[Emerald (MCB UP)]
日期:2021-12-20
卷期号:15 (3): 401-413
被引量:10
标识
DOI:10.1108/ijicc-08-2021-0153
摘要
Purpose Intelligent diagnosis of equipment faults can effectively avoid the shutdown caused by equipment faults and improve the safety of the equipment. At present, the diagnosis of various kinds of bearing fault information, such as the occurrence, location and degree of fault, can be carried out by machine learning and deep learning and realized through the multiclassification method. However, the multiclassification method is not perfect in distinguishing similar fault categories and visual representation of fault information. To improve the above shortcomings, an end-to-end fault multilabel classification model is proposed for bearing fault diagnosis. Design/methodology/approach In this model, the labels of each bearing are binarized by using the binary relevance method. Then, the integrated convolutional neural network and gated recurrent unit (CNN-GRU) is employed to classify faults. Different from the general CNN networks, the CNN-GRU network adds multiple GRU layers after the convolutional layers and the pool layers. Findings The Paderborn University bearing dataset is utilized to demonstrate the practicability of the model. The experimental results show that the average accuracy in test set is 99.7%, and the proposed network is better than multilayer perceptron and CNN in fault diagnosis of bearing, and the multilabel classification method is superior to the multiclassification method. Consequently, the model can intuitively classify faults with higher accuracy. Originality/value The fault labels of each bearing are labeled according to the failure or not, the fault location, the damage mode and the damage degree, and then the binary value is obtained. The multilabel problem is transformed into a binary classification problem of each fault label by the binary relevance method, and the predicted probability value of each fault label is directly output in the output layer, which visually distinguishes different fault conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI