The multilabel fault diagnosis model of bearing based on integrated convolutional neural network and gated recurrent unit

计算机科学 卷积神经网络 断层(地质) 人工智能 方位(导航) 模式识别(心理学) 深度学习 相关性(法律) 人工神经网络 感知器 二元分类 数据挖掘 机器学习 支持向量机 地质学 地震学 法学 政治学
作者
Shanling Han,Shoudong Zhang,Yong Li,Long Chen
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald Publishing Limited]
卷期号:15 (3): 401-413 被引量:11
标识
DOI:10.1108/ijicc-08-2021-0153
摘要

Purpose Intelligent diagnosis of equipment faults can effectively avoid the shutdown caused by equipment faults and improve the safety of the equipment. At present, the diagnosis of various kinds of bearing fault information, such as the occurrence, location and degree of fault, can be carried out by machine learning and deep learning and realized through the multiclassification method. However, the multiclassification method is not perfect in distinguishing similar fault categories and visual representation of fault information. To improve the above shortcomings, an end-to-end fault multilabel classification model is proposed for bearing fault diagnosis. Design/methodology/approach In this model, the labels of each bearing are binarized by using the binary relevance method. Then, the integrated convolutional neural network and gated recurrent unit (CNN-GRU) is employed to classify faults. Different from the general CNN networks, the CNN-GRU network adds multiple GRU layers after the convolutional layers and the pool layers. Findings The Paderborn University bearing dataset is utilized to demonstrate the practicability of the model. The experimental results show that the average accuracy in test set is 99.7%, and the proposed network is better than multilayer perceptron and CNN in fault diagnosis of bearing, and the multilabel classification method is superior to the multiclassification method. Consequently, the model can intuitively classify faults with higher accuracy. Originality/value The fault labels of each bearing are labeled according to the failure or not, the fault location, the damage mode and the damage degree, and then the binary value is obtained. The multilabel problem is transformed into a binary classification problem of each fault label by the binary relevance method, and the predicted probability value of each fault label is directly output in the output layer, which visually distinguishes different fault conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
star应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
归尘应助科研通管家采纳,获得30
1秒前
1秒前
书羽应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得30
1秒前
changping应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
彗星入梦完成签到 ,获得积分10
2秒前
zhenzheng完成签到 ,获得积分0
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
GJJJJJJJ应助科研通管家采纳,获得30
2秒前
王朝祥完成签到,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
汉堡包应助兰兰爱吃鱼采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得20
3秒前
红领巾klj发布了新的文献求助10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得20
3秒前
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
刘金凤发布了新的文献求助10
5秒前
烟花应助SWJ采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097403
求助须知:如何正确求助?哪些是违规求助? 4309929
关于积分的说明 13428703
捐赠科研通 4137399
什么是DOI,文献DOI怎么找? 2266602
邀请新用户注册赠送积分活动 1269747
关于科研通互助平台的介绍 1206069