The multilabel fault diagnosis model of bearing based on integrated convolutional neural network and gated recurrent unit

计算机科学 卷积神经网络 断层(地质) 人工智能 方位(导航) 模式识别(心理学) 深度学习 相关性(法律) 人工神经网络 感知器 二元分类 数据挖掘 机器学习 支持向量机 地质学 地震学 法学 政治学
作者
Shanling Han,Shoudong Zhang,Yong Li,Long Chen
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald (MCB UP)]
卷期号:15 (3): 401-413 被引量:11
标识
DOI:10.1108/ijicc-08-2021-0153
摘要

Purpose Intelligent diagnosis of equipment faults can effectively avoid the shutdown caused by equipment faults and improve the safety of the equipment. At present, the diagnosis of various kinds of bearing fault information, such as the occurrence, location and degree of fault, can be carried out by machine learning and deep learning and realized through the multiclassification method. However, the multiclassification method is not perfect in distinguishing similar fault categories and visual representation of fault information. To improve the above shortcomings, an end-to-end fault multilabel classification model is proposed for bearing fault diagnosis. Design/methodology/approach In this model, the labels of each bearing are binarized by using the binary relevance method. Then, the integrated convolutional neural network and gated recurrent unit (CNN-GRU) is employed to classify faults. Different from the general CNN networks, the CNN-GRU network adds multiple GRU layers after the convolutional layers and the pool layers. Findings The Paderborn University bearing dataset is utilized to demonstrate the practicability of the model. The experimental results show that the average accuracy in test set is 99.7%, and the proposed network is better than multilayer perceptron and CNN in fault diagnosis of bearing, and the multilabel classification method is superior to the multiclassification method. Consequently, the model can intuitively classify faults with higher accuracy. Originality/value The fault labels of each bearing are labeled according to the failure or not, the fault location, the damage mode and the damage degree, and then the binary value is obtained. The multilabel problem is transformed into a binary classification problem of each fault label by the binary relevance method, and the predicted probability value of each fault label is directly output in the output layer, which visually distinguishes different fault conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助自然听兰采纳,获得30
1秒前
等乙天发布了新的文献求助10
1秒前
仔仔仔平发布了新的文献求助10
3秒前
猫蒲发布了新的文献求助10
3秒前
领导范儿应助稳重小虾米采纳,获得10
3秒前
SciGPT应助唐唐采纳,获得10
3秒前
4秒前
鳗鱼不尤完成签到,获得积分10
4秒前
5秒前
充电宝应助www采纳,获得10
7秒前
lili发布了新的文献求助10
8秒前
暴扣三米线完成签到 ,获得积分10
8秒前
李爱国应助康康采纳,获得10
9秒前
心想事成发布了新的文献求助10
9秒前
11秒前
如意山晴完成签到 ,获得积分10
11秒前
12秒前
13秒前
林夕发布了新的文献求助10
14秒前
科研通AI6应助霸王丹采纳,获得10
14秒前
14秒前
15秒前
17秒前
李健应助猫蒲采纳,获得10
17秒前
逍遥子完成签到,获得积分10
17秒前
17秒前
宝石山完成签到,获得积分10
18秒前
布可完成签到,获得积分0
19秒前
xu发布了新的文献求助10
19秒前
小蘑菇应助科研顺利采纳,获得10
20秒前
20秒前
20秒前
21秒前
__发布了新的文献求助100
23秒前
wxy发布了新的文献求助10
23秒前
24秒前
24秒前
24秒前
共享精神应助11采纳,获得10
25秒前
浮游应助Liu采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563431
求助须知:如何正确求助?哪些是违规求助? 4648294
关于积分的说明 14684348
捐赠科研通 4590281
什么是DOI,文献DOI怎么找? 2518423
邀请新用户注册赠送积分活动 1491102
关于科研通互助平台的介绍 1462386