Ti1–graphene single-atom material for improved energy level alignment in perovskite solar cells

石墨烯 光伏 材料科学 钙钛矿(结构) 电极 氧化物 纳米技术 碳纤维 能量转换效率 光伏系统 光电子学 钙钛矿太阳能电池 化学工程 太阳能电池 复合材料 化学 电气工程 冶金 物理化学 工程类 复合数
作者
Chunyang Zhang,Suxia Liang,Wei Liu,Felix T. Eickemeyer,Xiangbin Cai,Ke Zhou,Jiming Bian,Hongwei Zhu,Chao Zhu,Ning Wang,Zaiwei Wang,Jiangwei Zhang,Yudi Wang,Jinwen Hu,Hongru Ma,Cuncun Xin,Shaik M. Zakeeruddin,Michaël Grätzel,Yantao Shi
出处
期刊:Nature Energy [Springer Nature]
卷期号:6 (12): 1154-1163 被引量:114
标识
DOI:10.1038/s41560-021-00944-0
摘要

Carbon-based perovskite solar cells (C-PSCs) are widely accepted as stable, cost-effective photovoltaics. However, C-PSCs have been suffering from relatively low power conversion efficiencies (PCEs) due to severe electrode-related energy loss. Herein, we report the application of a single-atom material (SAM) as the back electrode in C-PSCs. Our Ti1–rGO consists of single titanium (Ti) adatoms anchored on reduced graphene oxide (rGO) in a well-defined Ti1O4-OH configuration capable of tuning the electronic properties of rGO. The downshift of the Fermi level notably minimizes the series resistance of the carbon-based electrode. By combining with an advanced modular cell architecture, a steady-state PCE of up to 20.6% for C-PSCs is finally achieved. Furthermore, the devices without encapsulation retain 98% and 95% of their initial values for 1,300 h under 1 sun of illumination at 25°C and 60 °C, respectively. Carbon materials are promising for perovskite solar cells but suffer from poor interfacial energy level alignment. Now, Zhang et al. show that Ti atomically dispersed in reduced graphene reduces energy losses improving device performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
章家炜发布了新的文献求助10
1秒前
脑洞疼应助xfxx采纳,获得10
1秒前
wanci应助茶博士采纳,获得10
1秒前
所所应助YYT采纳,获得10
2秒前
匿名网友完成签到 ,获得积分10
2秒前
雪白雍完成签到,获得积分10
3秒前
maomao完成签到,获得积分10
3秒前
我是笨蛋完成签到 ,获得积分10
5秒前
酷波er应助caoyy采纳,获得10
6秒前
6秒前
Dreamsli发布了新的文献求助10
7秒前
有只小狗完成签到,获得积分10
8秒前
飞飞完成签到,获得积分10
9秒前
豆dou发布了新的文献求助10
9秒前
Mannone完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
13679165979完成签到,获得积分10
10秒前
Jocelyn7关注了科研通微信公众号
11秒前
Jzhang应助赵小可可可可采纳,获得10
11秒前
wls完成签到 ,获得积分10
12秒前
CC完成签到,获得积分10
12秒前
13秒前
鬼才之眼完成签到 ,获得积分10
13秒前
xfxx发布了新的文献求助10
14秒前
章家炜完成签到,获得积分20
14秒前
14秒前
茶博士发布了新的文献求助10
14秒前
专通下水道完成签到 ,获得积分10
19秒前
19秒前
19秒前
nenoaowu发布了新的文献求助30
19秒前
小马甲应助章家炜采纳,获得10
21秒前
赵李艺完成签到 ,获得积分10
21秒前
完美世界应助高大黄蜂采纳,获得10
22秒前
23秒前
23秒前
23秒前
zhangzhen发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824