清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-Focus Image Fusion Based on Convolution Neural Network for Parkinson’s Disease Image Classification

卷积神经网络 人工智能 图像融合 情态动词 计算机科学 计算机辅助设计 光学(聚焦) 卷积(计算机科学) 模式识别(心理学) 保险丝(电气) 图像(数学) 深度学习 融合 磁共振成像 人工神经网络 帕金森病 疾病 医学 放射科 工程类 病理 物理 语言学 化学 哲学 电气工程 光学 工程制图 高分子化学
作者
Yin Dai,Yumeng Song,Weibin Liu,Wenhe Bai,Yifan Gao,Xiaoli Dong,Wenbo Lv
出处
期刊:Diagnostics [MDPI AG]
卷期号:11 (12): 2379-2379 被引量:5
标识
DOI:10.3390/diagnostics11122379
摘要

Parkinson's disease (PD) is a common neurodegenerative disease that has a significant impact on people's lives. Early diagnosis is imperative since proper treatment stops the disease's progression. With the rapid development of CAD techniques, there have been numerous applications of computer-aided diagnostic (CAD) techniques in the diagnosis of PD. In recent years, image fusion has been applied in various fields and is valuable in medical diagnosis. This paper mainly adopts a multi-focus image fusion method primarily based on deep convolutional neural networks to fuse magnetic resonance images (MRI) and positron emission tomography (PET) neural photographs into multi-modal images. Additionally, the study selected Alexnet, Densenet, ResNeSt, and Efficientnet neural networks to classify the single-modal MRI dataset and the multi-modal dataset. The test accuracy rates of the single-modal MRI dataset are 83.31%, 87.76%, 86.37%, and 86.44% on the Alexnet, Densenet, ResNeSt, and Efficientnet, respectively. Moreover, the test accuracy rates of the multi-modal fusion dataset on the Alexnet, Densenet, ResNeSt, and Efficientnet are 90.52%, 97.19%, 94.15%, and 93.39%. As per all four networks discussed above, it can be concluded that the test results for the multi-modal dataset are better than those for the single-modal MRI dataset. The experimental results showed that the multi-focus image fusion method according to deep learning can enhance the accuracy of PD image classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助桃子e采纳,获得10
12秒前
minjeong完成签到,获得积分10
13秒前
29秒前
量子星尘发布了新的文献求助10
31秒前
桃子e发布了新的文献求助10
32秒前
35秒前
蝎子莱莱xth完成签到,获得积分10
37秒前
怕黑小伙发布了新的文献求助10
39秒前
41秒前
氢锂钠钾铷铯钫完成签到,获得积分10
42秒前
Square完成签到,获得积分10
46秒前
jjyyy发布了新的文献求助10
47秒前
51秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
科研通AI6.1应助xiaoyu采纳,获得10
1分钟前
披着羊皮的狼完成签到 ,获得积分10
1分钟前
科研通AI6.1应助桃子e采纳,获得10
1分钟前
2分钟前
桃子e发布了新的文献求助10
2分钟前
2分钟前
Edward发布了新的文献求助10
2分钟前
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
zzhui完成签到,获得积分10
2分钟前
哈哈完成签到,获得积分10
3分钟前
3分钟前
xiaoyu发布了新的文献求助10
3分钟前
一颗困困豆耶完成签到,获得积分10
4分钟前
小马甲应助桃子e采纳,获得10
4分钟前
文艺的鲜花完成签到 ,获得积分10
4分钟前
5分钟前
金庭振发布了新的文献求助10
5分钟前
我是笨蛋完成签到 ,获得积分10
5分钟前
金庭振完成签到,获得积分20
5分钟前
polaris发布了新的文献求助10
5分钟前
5分钟前
fishss完成签到 ,获得积分0
5分钟前
wrl2023完成签到,获得积分10
5分钟前
你没事吧完成签到 ,获得积分10
5分钟前
欣欣完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788937
求助须知:如何正确求助?哪些是违规求助? 5713498
关于积分的说明 15474025
捐赠科研通 4916906
什么是DOI,文献DOI怎么找? 2646617
邀请新用户注册赠送积分活动 1594299
关于科研通互助平台的介绍 1548721