二氧化碳重整
光催化
铑
甲烷
材料科学
纳米颗粒
纳米复合材料
催化作用
化学工程
氧化物
氧化铈
纳米技术
水煤气变换反应
合成气
光化学
化学
金属
有机化学
冶金
工程类
作者
Shusaku Shoji,Abdillah Sani Bin Mohd Najib,Min‐Wen Yu,Tomokazu Yamamoto,Sou Yasuhara,Akira Yamaguchi,Xiaobo Peng,Syo Matsumura,Satoshi Ishii,Yohei Cho,Takeshi Fujita,Shigenori Ueda,Kuo‐Ping Chen,Hideki Abe,Masahiro Miyauchi
出处
期刊:Chem catalysis
[Elsevier]
日期:2021-12-17
卷期号:2 (2): 321-329
被引量:12
标识
DOI:10.1016/j.checat.2021.11.015
摘要
The photocatalytic dry reforming of methane (photoDRM: CH4 + CO2 = 2CO + 2H2) converts greenhouse gases into valuable synthesis gas with photon energy. However, previous photoDRM catalysts comprising supported metal nanoparticles hardly avoid the recombination of photoexcited charges. Herein, we report that significant photoDRM performance can be achieved by a metal-oxide nanocomposite consisting of nanometer-thick, intertwined networks of fibrous rhodium metal and cerium dioxide, i.e., Rh#CeO2. The Rh#CeO2 nanocomposite exhibits the world-highest conversion and yield in photoDRM under UV light irradiation, being accompanied with no other side reactions such as reverse water gas shift reaction. Theoretical simulations and Kelvin probe force microscopy demonstrate that the photoexcited electrons and holes in Rh#CeO2 are efficiently partitioned into the Rh- and CeO2 nanophases, respectively. The efficient charge partitioning in Rh#CeO2 accounts for the selective photoDRM reaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI