亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A data-driven method for dynamic load forecasting of scraper conveyer based on rough set and multilayered self-normalizing gated recurrent network

铲运机现场 人工神经网络 粗集 集合(抽象数据类型) 计算机科学 非线性系统 控制理论(社会学) 数据挖掘 工程类 人工智能 量子力学 物理 万维网 程序设计语言 控制(管理)
作者
Hong He,Zhengxiong Lu,Chuanwei Zhang,Yuan Wang,Wei Guo,Shuanfeng Zhao
出处
期刊:Energy Reports [Elsevier]
卷期号:7: 1352-1362 被引量:1
标识
DOI:10.1016/j.egyr.2021.09.127
摘要

The dynamic load forecasting of scraper conveyer is one of the key problems that need to be solved in unmanned coal mining. The dynamic load forecasting system of scraper conveyer is a complex, multivariable, and nonlinear system, and there are coupling relations between every variable. It is very difficult to establish precise mathematic model. Therefore, based on rough set and the gated recurrent units (GRU), this study proposes a data-driven method for dynamic load forecasting of scraper conveyer based on rough set and multilayered self-normalizing GRU network. First, the rough set was applied to carry on for a variety of factors affecting load forecasting of scraper conveyer to optimize the model input, and the importance of each attribute for load of scraper conveyer was obtained. Then, a multilayered self-normalizing gated recurrent units (MS-GRU) model is proposed for the dynamic load forecasting of scraper conveyer. This model introduces scaled exponential linear units (SELU) activation function to squash the hidden states to calculate the output of the model, and the exploding and vanishing gradient problem are overcome in a stacked GRU neural network. Finally, an experiment is applied to verify the proposed model in this paper. The experimental results show that this article Compared with the existing methods, the model shows a higher accuracy rate 95.8%, which can well complete the prediction of the operating parameters of the shearer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啵子发布了新的文献求助10
1秒前
4秒前
sen发布了新的文献求助10
4秒前
literature发布了新的文献求助10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
Lucas应助耳东采纳,获得10
11秒前
JamesPei应助sjh采纳,获得10
13秒前
17秒前
情怀应助sen采纳,获得10
19秒前
Viiigo完成签到,获得积分10
23秒前
耳东发布了新的文献求助10
24秒前
科目三应助王颖超采纳,获得10
28秒前
28秒前
瓶子发布了新的文献求助10
31秒前
35秒前
王颖超发布了新的文献求助10
40秒前
秉章发布了新的文献求助10
47秒前
香樟沐雪完成签到,获得积分10
51秒前
性感母蟑螂完成签到 ,获得积分10
53秒前
香樟沐雪发布了新的文献求助20
54秒前
58秒前
瓶子发布了新的文献求助10
1分钟前
暴躁的问兰完成签到 ,获得积分10
1分钟前
CipherSage应助sugkook采纳,获得10
1分钟前
科研通AI6.1应助伊可创采纳,获得10
1分钟前
1分钟前
ok发布了新的文献求助10
1分钟前
andre20完成签到 ,获得积分10
1分钟前
sugkook发布了新的文献求助10
1分钟前
1分钟前
qing应助谨慎的夏采纳,获得10
1分钟前
感谢发布了新的文献求助10
1分钟前
2分钟前
2分钟前
感谢完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780276
求助须知:如何正确求助?哪些是违规求助? 5654271
关于积分的说明 15453001
捐赠科研通 4911021
什么是DOI,文献DOI怎么找? 2643202
邀请新用户注册赠送积分活动 1590841
关于科研通互助平台的介绍 1545346