A data-driven method for dynamic load forecasting of scraper conveyer based on rough set and multilayered self-normalizing gated recurrent network

铲运机现场 人工神经网络 粗集 集合(抽象数据类型) 计算机科学 非线性系统 控制理论(社会学) 数据挖掘 工程类 人工智能 量子力学 物理 万维网 程序设计语言 控制(管理)
作者
Hong He,Zhengxiong Lu,Chuanwei Zhang,Yuan Wang,Wei Guo,Shuanfeng Zhao
出处
期刊:Energy Reports [Elsevier BV]
卷期号:7: 1352-1362 被引量:1
标识
DOI:10.1016/j.egyr.2021.09.127
摘要

The dynamic load forecasting of scraper conveyer is one of the key problems that need to be solved in unmanned coal mining. The dynamic load forecasting system of scraper conveyer is a complex, multivariable, and nonlinear system, and there are coupling relations between every variable. It is very difficult to establish precise mathematic model. Therefore, based on rough set and the gated recurrent units (GRU), this study proposes a data-driven method for dynamic load forecasting of scraper conveyer based on rough set and multilayered self-normalizing GRU network. First, the rough set was applied to carry on for a variety of factors affecting load forecasting of scraper conveyer to optimize the model input, and the importance of each attribute for load of scraper conveyer was obtained. Then, a multilayered self-normalizing gated recurrent units (MS-GRU) model is proposed for the dynamic load forecasting of scraper conveyer. This model introduces scaled exponential linear units (SELU) activation function to squash the hidden states to calculate the output of the model, and the exploding and vanishing gradient problem are overcome in a stacked GRU neural network. Finally, an experiment is applied to verify the proposed model in this paper. The experimental results show that this article Compared with the existing methods, the model shows a higher accuracy rate 95.8%, which can well complete the prediction of the operating parameters of the shearer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
神经娃完成签到,获得积分10
3秒前
脑洞疼应助NoMigraine采纳,获得10
6秒前
Eason完成签到,获得积分20
6秒前
大力水手发布了新的文献求助10
7秒前
林林林林完成签到 ,获得积分10
9秒前
11秒前
寒冷傲柔完成签到,获得积分20
11秒前
allzzwell完成签到 ,获得积分10
12秒前
13秒前
orixero应助miaomiaomiao采纳,获得10
13秒前
科研通AI2S应助U9A采纳,获得10
14秒前
14秒前
123完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
17秒前
无花果应助十三采纳,获得10
17秒前
呆呆熊发布了新的文献求助10
17秒前
怕黑的静蕾应助满眼星辰采纳,获得10
17秒前
linkman发布了新的文献求助10
23秒前
23秒前
24秒前
wanci应助wjw采纳,获得10
25秒前
26秒前
26秒前
orixero应助怡春院李老鸨采纳,获得10
26秒前
Lucas应助liuyc采纳,获得10
28秒前
甜美冰旋发布了新的文献求助10
28秒前
沈DJ完成签到,获得积分10
29秒前
Xieyusen发布了新的文献求助10
29秒前
30秒前
30秒前
nana完成签到,获得积分20
30秒前
小二郎应助轻松的忆彤采纳,获得10
33秒前
淡淡智宸发布了新的文献求助10
35秒前
vision0000发布了新的文献求助10
36秒前
彭于晏应助余111采纳,获得10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517