亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A data-driven method for dynamic load forecasting of scraper conveyer based on rough set and multilayered self-normalizing gated recurrent network

铲运机现场 人工神经网络 粗集 集合(抽象数据类型) 计算机科学 非线性系统 控制理论(社会学) 数据挖掘 工程类 人工智能 物理 控制(管理) 量子力学 万维网 程序设计语言
作者
Hong He,Zhengxiong Lu,Chuanwei Zhang,Yuan Wang,Wei Guo,Shuanfeng Zhao
出处
期刊:Energy Reports [Elsevier BV]
卷期号:7: 1352-1362 被引量:1
标识
DOI:10.1016/j.egyr.2021.09.127
摘要

The dynamic load forecasting of scraper conveyer is one of the key problems that need to be solved in unmanned coal mining. The dynamic load forecasting system of scraper conveyer is a complex, multivariable, and nonlinear system, and there are coupling relations between every variable. It is very difficult to establish precise mathematic model. Therefore, based on rough set and the gated recurrent units (GRU), this study proposes a data-driven method for dynamic load forecasting of scraper conveyer based on rough set and multilayered self-normalizing GRU network. First, the rough set was applied to carry on for a variety of factors affecting load forecasting of scraper conveyer to optimize the model input, and the importance of each attribute for load of scraper conveyer was obtained. Then, a multilayered self-normalizing gated recurrent units (MS-GRU) model is proposed for the dynamic load forecasting of scraper conveyer. This model introduces scaled exponential linear units (SELU) activation function to squash the hidden states to calculate the output of the model, and the exploding and vanishing gradient problem are overcome in a stacked GRU neural network. Finally, an experiment is applied to verify the proposed model in this paper. The experimental results show that this article Compared with the existing methods, the model shows a higher accuracy rate 95.8%, which can well complete the prediction of the operating parameters of the shearer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen完成签到 ,获得积分10
5秒前
sci2025opt完成签到 ,获得积分10
9秒前
siv完成签到,获得积分10
31秒前
科研通AI6应助懦弱的丹秋采纳,获得10
39秒前
科研兵发布了新的文献求助10
45秒前
天天快乐应助shee采纳,获得10
51秒前
搜集达人应助科研兵采纳,获得10
52秒前
insomnia417完成签到,获得积分0
58秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
3分钟前
3分钟前
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
朴素易梦发布了新的文献求助30
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
聪明的云完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
朴素易梦完成签到,获得积分10
6分钟前
小马甲应助John采纳,获得10
7分钟前
kuoping完成签到,获得积分0
7分钟前
7分钟前
John完成签到,获得积分10
7分钟前
John发布了新的文献求助10
7分钟前
Ji完成签到,获得积分10
7分钟前
阔达白凡完成签到,获得积分10
7分钟前
桥西小河完成签到 ,获得积分10
7分钟前
TongKY完成签到 ,获得积分10
7分钟前
8分钟前
美丽的冰枫完成签到,获得积分10
8分钟前
义气的断秋完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827