A data-driven method for dynamic load forecasting of scraper conveyer based on rough set and multilayered self-normalizing gated recurrent network

铲运机现场 人工神经网络 粗集 集合(抽象数据类型) 计算机科学 非线性系统 控制理论(社会学) 数据挖掘 工程类 人工智能 量子力学 物理 万维网 程序设计语言 控制(管理)
作者
Hong He,Zhengxiong Lu,Chuanwei Zhang,Yuan Wang,Wei Guo,Shuanfeng Zhao
出处
期刊:Energy Reports [Elsevier]
卷期号:7: 1352-1362 被引量:1
标识
DOI:10.1016/j.egyr.2021.09.127
摘要

The dynamic load forecasting of scraper conveyer is one of the key problems that need to be solved in unmanned coal mining. The dynamic load forecasting system of scraper conveyer is a complex, multivariable, and nonlinear system, and there are coupling relations between every variable. It is very difficult to establish precise mathematic model. Therefore, based on rough set and the gated recurrent units (GRU), this study proposes a data-driven method for dynamic load forecasting of scraper conveyer based on rough set and multilayered self-normalizing GRU network. First, the rough set was applied to carry on for a variety of factors affecting load forecasting of scraper conveyer to optimize the model input, and the importance of each attribute for load of scraper conveyer was obtained. Then, a multilayered self-normalizing gated recurrent units (MS-GRU) model is proposed for the dynamic load forecasting of scraper conveyer. This model introduces scaled exponential linear units (SELU) activation function to squash the hidden states to calculate the output of the model, and the exploding and vanishing gradient problem are overcome in a stacked GRU neural network. Finally, an experiment is applied to verify the proposed model in this paper. The experimental results show that this article Compared with the existing methods, the model shows a higher accuracy rate 95.8%, which can well complete the prediction of the operating parameters of the shearer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助xiaotong采纳,获得10
刚刚
今后应助早川秋Akaiii采纳,获得10
1秒前
元谷雪发布了新的文献求助30
2秒前
吴先生完成签到,获得积分10
2秒前
包容草莓发布了新的文献求助20
3秒前
3秒前
顾矜应助欧阳万仇采纳,获得10
4秒前
4秒前
小葵完成签到,获得积分10
4秒前
所所应助ZXC采纳,获得10
4秒前
Criminology34应助xhxh5946采纳,获得10
4秒前
5秒前
陈年人少熬夜完成签到 ,获得积分10
5秒前
尊敬的惠发布了新的文献求助30
5秒前
6秒前
6秒前
Yianyan完成签到 ,获得积分20
6秒前
aac完成签到,获得积分10
6秒前
sss关注了科研通微信公众号
6秒前
雪松发布了新的文献求助10
6秒前
linkman发布了新的文献求助50
7秒前
Mic应助FyD采纳,获得10
7秒前
7秒前
脑洞疼应助文右三采纳,获得10
8秒前
醒醒应助懒羊羊采纳,获得10
8秒前
8秒前
8秒前
sdh7941发布了新的文献求助10
9秒前
Tobiuo发布了新的文献求助10
10秒前
tgg发布了新的文献求助10
10秒前
共享精神应助宝宝采纳,获得10
11秒前
11秒前
11秒前
文献一搜就出完成签到,获得积分10
12秒前
DQY发布了新的文献求助10
12秒前
元谷雪发布了新的文献求助10
12秒前
寻道图强应助苹果采纳,获得50
12秒前
12秒前
RA000发布了新的文献求助10
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360