A Mechanistic Bayesian Inferential Workflow for Estimation of In Vivo Skin Permeation from In Vitro Measurements

体内 工作流程 渗透(战争) 背景(考古学) 生物系统 计算机科学 化学 贝叶斯概率 渗透 吸收(声学) 生化工程 生物医学工程 数学 材料科学 人工智能 工程类 生物 运筹学 数据库 复合材料 古生物学 生物技术 生物化学
作者
Abdullah Hamadeh,John Troutman,Abdulkarim Najjar,Andrea N. Edginton
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier]
卷期号:111 (3): 838-851 被引量:6
标识
DOI:10.1016/j.xphs.2021.11.028
摘要

Computational models can play an integral role in the chemical risk assessment of dermatological products. However, a limitation on the ability of mathematical models to extrapolate from in vitro measurements to in human predictions arises from context-dependence: modeling assumptions made in one setting may not carry over to another scenario. Mechanistic models of dermal absorption relate the skin penetration kinetics of permeants to their partitioning and diffusion across elementary sub-compartments of the skin. This endows them with a flexibility through which specific model components can be adjusted to better reflect dermal absorption in contexts that differ from the in vitro setting, while keeping fixed any context-invariant parameters that remain unchanged in the two scenarios. This paper presents a workflow for predicting in vivo dermal absorption by integrating a mechanistic model of skin penetration with in vitro permeation test (IVPT) measurements. A Bayesian approach is adopted to infer a joint posterior distribution of context-invariant model parameters. By populating the model with samples of context-invariant parameters from this distribution and adjusting context-dependent parameters to suit the in vivo setting, simulations of the model yield estimates of the likely range of in vivo dermal absorption given the IVPT data. This workflow is applied to five compounds previously tested in vivo. In each case, the range of in vivo predictions encompassed the range observed experimentally. These studies demonstrate that the proposed workflow enables the derivation of mechanistically derived upper bounds on dermal absorption for the purposes of chemical risk assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱骑车的CH完成签到,获得积分10
刚刚
刚刚
小小夕完成签到 ,获得积分20
刚刚
1秒前
phd_cheng发布了新的文献求助10
1秒前
1秒前
凉月完成签到,获得积分10
1秒前
2秒前
王修发布了新的文献求助10
3秒前
czxy完成签到,获得积分10
3秒前
活泼白山完成签到 ,获得积分10
3秒前
乐观半梅完成签到,获得积分10
4秒前
xiaobai123456发布了新的文献求助10
4秒前
害怕的千琴完成签到,获得积分10
4秒前
郑一鸣完成签到,获得积分10
4秒前
4秒前
4秒前
青青发布了新的文献求助10
5秒前
受伤不斜发布了新的文献求助10
5秒前
5秒前
5秒前
子车茗应助雾失楼台采纳,获得30
5秒前
洋洋完成签到,获得积分10
5秒前
5秒前
6秒前
酷炫的芷蕾完成签到,获得积分10
6秒前
赘婿应助ranranyaoyao采纳,获得10
6秒前
超表面完成签到,获得积分10
6秒前
micomico完成签到,获得积分10
7秒前
7秒前
7秒前
虚心焦发布了新的文献求助10
7秒前
8秒前
8秒前
拂晨柳絮发布了新的文献求助10
8秒前
忐忑的安筠完成签到,获得积分20
8秒前
9秒前
冷迎梦完成签到,获得积分10
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619271
求助须知:如何正确求助?哪些是违规求助? 4704013
关于积分的说明 14925684
捐赠科研通 4759427
什么是DOI,文献DOI怎么找? 2550503
邀请新用户注册赠送积分活动 1513237
关于科研通互助平台的介绍 1474401