Machine Learning Approaches in Traditional Chinese Medicine: A Systematic Review

人工智能 线性判别分析 支持向量机 机器学习 偏最小二乘回归 计算机科学 聚类分析 人工神经网络 主成分分析 降维 领域(数学) 决策树 层次聚类 随机森林 判别函数分析 数据挖掘 模式识别(心理学) 数学 纯数学
作者
Haiyang Chen,He Yu
出处
期刊:The American Journal of Chinese Medicine [World Scientific]
卷期号:50 (01): 91-131 被引量:19
标识
DOI:10.1142/s0192415x22500045
摘要

Machine learning (ML), as a branch of artificial intelligence, acquires the potential and meaningful rules from the mass of data via diverse algorithms. Owing to all research of traditional Chinese medicine (TCM) belonging to the digitalization of clinical records or experimental works, a massive and complex amount of data has become an inextricable part of the related studies. It is thus not surprising that ML approaches, as novel and efficient tools to mine the useful knowledge from data, have created inroads in a diversity of scopes of TCM over the past decade of years. However, by browsing lots of literature, we find that not all of the ML approaches perform well in the same field. Upon further consideration, we infer that the specificity may inhere between the ML approaches and their applied fields. This systematic review focuses its attention on the four categories of ML approaches and their eight application scopes in TCM. According to the function, ML approaches are classified into four categories, including classification, regression, clustering, and dimensionality reduction, and into 14 models as follows in more detail: support vector machine, least square-support vector machine, logistic regression, partial least squares regression, k-means clustering, hierarchical cluster analysis, artificial neural network, back propagation neural network, convolutional neural network, decision tree, random forest, principal component analysis, partial least squares-discriminant analysis, and orthogonal partial least squares-discriminant analysis. The eight common applied fields are divided into two parts: one for TCM, such as the diagnosis of diseases, the determination of syndromes, and the analysis of prescription, and the other for the related researches of Chinese herbal medicine, such as the quality control, the identification of geographic origins, the pharmacodynamic material basis, the medicinal properties, and the pharmacokinetics and pharmacodynamics. Additionally, this paper discusses the function and feature difference among ML approaches when they are applied to the corresponding fields via comparing their principles. The specificity of each approach to its applied fields has also been affirmed, whereby laying a foundation for subsequent studies applying ML approaches to TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
2秒前
3秒前
智胜东方朔完成签到,获得积分10
3秒前
黑妖完成签到,获得积分10
3秒前
WYJie发布了新的文献求助10
4秒前
AdventureChen完成签到 ,获得积分10
4秒前
Lucas应助BowenShi采纳,获得10
5秒前
默默的宛儿关注了科研通微信公众号
5秒前
麦麦完成签到 ,获得积分10
5秒前
Orange应助花城诚成采纳,获得10
5秒前
您好发布了新的文献求助10
6秒前
6秒前
内向妙梦发布了新的文献求助10
6秒前
不配.应助WTX采纳,获得20
6秒前
7秒前
T_MC郭完成签到,获得积分10
8秒前
慕青应助leec采纳,获得10
8秒前
酷酷问夏完成签到,获得积分10
9秒前
麦麦关注了科研通微信公众号
9秒前
高高烨磊发布了新的文献求助10
11秒前
霍小美完成签到,获得积分10
11秒前
我是老大应助chenyutong采纳,获得10
12秒前
14秒前
华仔应助您好采纳,获得10
14秒前
15秒前
yw完成签到,获得积分20
16秒前
16秒前
大模型应助Liar采纳,获得10
17秒前
认真丹亦完成签到 ,获得积分10
17秒前
YCH完成签到,获得积分10
18秒前
Akim应助内向妙梦采纳,获得10
19秒前
20秒前
yw发布了新的文献求助10
21秒前
听话的刺猬完成签到,获得积分10
21秒前
琳琳发布了新的文献求助10
21秒前
22秒前
wafo完成签到,获得积分10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155593
求助须知:如何正确求助?哪些是违规求助? 2806820
关于积分的说明 7870825
捐赠科研通 2465126
什么是DOI,文献DOI怎么找? 1312144
科研通“疑难数据库(出版商)”最低求助积分说明 629889
版权声明 601892