Machine Learning Approaches in Traditional Chinese Medicine: A Systematic Review

人工智能 线性判别分析 支持向量机 机器学习 偏最小二乘回归 计算机科学 聚类分析 人工神经网络 主成分分析 降维 领域(数学) 决策树 层次聚类 随机森林 判别函数分析 数据挖掘 模式识别(心理学) 数学 纯数学
作者
Haiyang Chen,He Yu
出处
期刊:The American Journal of Chinese Medicine [World Scientific]
卷期号:50 (01): 91-131 被引量:34
标识
DOI:10.1142/s0192415x22500045
摘要

Machine learning (ML), as a branch of artificial intelligence, acquires the potential and meaningful rules from the mass of data via diverse algorithms. Owing to all research of traditional Chinese medicine (TCM) belonging to the digitalization of clinical records or experimental works, a massive and complex amount of data has become an inextricable part of the related studies. It is thus not surprising that ML approaches, as novel and efficient tools to mine the useful knowledge from data, have created inroads in a diversity of scopes of TCM over the past decade of years. However, by browsing lots of literature, we find that not all of the ML approaches perform well in the same field. Upon further consideration, we infer that the specificity may inhere between the ML approaches and their applied fields. This systematic review focuses its attention on the four categories of ML approaches and their eight application scopes in TCM. According to the function, ML approaches are classified into four categories, including classification, regression, clustering, and dimensionality reduction, and into 14 models as follows in more detail: support vector machine, least square-support vector machine, logistic regression, partial least squares regression, k-means clustering, hierarchical cluster analysis, artificial neural network, back propagation neural network, convolutional neural network, decision tree, random forest, principal component analysis, partial least squares-discriminant analysis, and orthogonal partial least squares-discriminant analysis. The eight common applied fields are divided into two parts: one for TCM, such as the diagnosis of diseases, the determination of syndromes, and the analysis of prescription, and the other for the related researches of Chinese herbal medicine, such as the quality control, the identification of geographic origins, the pharmacodynamic material basis, the medicinal properties, and the pharmacokinetics and pharmacodynamics. Additionally, this paper discusses the function and feature difference among ML approaches when they are applied to the corresponding fields via comparing their principles. The specificity of each approach to its applied fields has also been affirmed, whereby laying a foundation for subsequent studies applying ML approaches to TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy完成签到,获得积分10
2秒前
高r发布了新的文献求助10
2秒前
2秒前
2秒前
clientprogram完成签到,获得积分0
5秒前
星辰大海应助巫幻香采纳,获得50
5秒前
6秒前
6秒前
ryan发布了新的文献求助10
8秒前
8秒前
脑洞疼应助tao采纳,获得10
9秒前
xy发布了新的文献求助10
9秒前
9秒前
浔xxx发布了新的文献求助10
10秒前
李天王完成签到,获得积分10
11秒前
机智小蘑菇完成签到,获得积分10
13秒前
刀笔吏完成签到,获得积分10
14秒前
WB发布了新的文献求助10
14秒前
典雅诗筠完成签到 ,获得积分10
15秒前
今后应助SSS木南采纳,获得10
15秒前
乱武完成签到,获得积分10
15秒前
zy给zy的求助进行了留言
16秒前
wwww完成签到 ,获得积分10
17秒前
愉快的灭男完成签到,获得积分10
18秒前
22秒前
WB完成签到,获得积分10
24秒前
糟糕的日记本完成签到,获得积分10
25秒前
zhhh发布了新的文献求助10
27秒前
29秒前
32秒前
李明完成签到,获得积分10
32秒前
巫幻香完成签到,获得积分10
32秒前
33秒前
33秒前
小二郎应助wax采纳,获得10
34秒前
shouren发布了新的文献求助10
34秒前
35秒前
SSS木南发布了新的文献求助10
35秒前
38秒前
巫幻香发布了新的文献求助50
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993371
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264545
捐赠科研通 3273794
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652