Machine Learning Approaches in Traditional Chinese Medicine: A Systematic Review

人工智能 线性判别分析 支持向量机 机器学习 偏最小二乘回归 计算机科学 聚类分析 人工神经网络 主成分分析 降维 领域(数学) 决策树 层次聚类 随机森林 判别函数分析 数据挖掘 模式识别(心理学) 数学 纯数学
作者
Haiyang Chen,He Yu
出处
期刊:The American Journal of Chinese Medicine [World Scientific]
卷期号:50 (01): 91-131 被引量:39
标识
DOI:10.1142/s0192415x22500045
摘要

Machine learning (ML), as a branch of artificial intelligence, acquires the potential and meaningful rules from the mass of data via diverse algorithms. Owing to all research of traditional Chinese medicine (TCM) belonging to the digitalization of clinical records or experimental works, a massive and complex amount of data has become an inextricable part of the related studies. It is thus not surprising that ML approaches, as novel and efficient tools to mine the useful knowledge from data, have created inroads in a diversity of scopes of TCM over the past decade of years. However, by browsing lots of literature, we find that not all of the ML approaches perform well in the same field. Upon further consideration, we infer that the specificity may inhere between the ML approaches and their applied fields. This systematic review focuses its attention on the four categories of ML approaches and their eight application scopes in TCM. According to the function, ML approaches are classified into four categories, including classification, regression, clustering, and dimensionality reduction, and into 14 models as follows in more detail: support vector machine, least square-support vector machine, logistic regression, partial least squares regression, k-means clustering, hierarchical cluster analysis, artificial neural network, back propagation neural network, convolutional neural network, decision tree, random forest, principal component analysis, partial least squares-discriminant analysis, and orthogonal partial least squares-discriminant analysis. The eight common applied fields are divided into two parts: one for TCM, such as the diagnosis of diseases, the determination of syndromes, and the analysis of prescription, and the other for the related researches of Chinese herbal medicine, such as the quality control, the identification of geographic origins, the pharmacodynamic material basis, the medicinal properties, and the pharmacokinetics and pharmacodynamics. Additionally, this paper discusses the function and feature difference among ML approaches when they are applied to the corresponding fields via comparing their principles. The specificity of each approach to its applied fields has also been affirmed, whereby laying a foundation for subsequent studies applying ML approaches to TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
若槻椋完成签到,获得积分10
刚刚
wanci应助王延森采纳,获得10
1秒前
哈哈哈哈完成签到 ,获得积分10
1秒前
JamesPei应助能干的杨柿子采纳,获得10
4秒前
丘比特应助edtaa采纳,获得10
5秒前
为SCI奋斗完成签到,获得积分20
5秒前
李爱国应助啊啊啊啊采纳,获得10
6秒前
浮游应助猩猩星采纳,获得10
6秒前
7秒前
ss完成签到 ,获得积分10
10秒前
Lucky发布了新的文献求助20
10秒前
量子星尘发布了新的文献求助10
11秒前
鸡狗不如发布了新的文献求助10
11秒前
wanci应助yu采纳,获得30
11秒前
12秒前
田様应助白纸采纳,获得10
14秒前
Nynn完成签到 ,获得积分10
15秒前
15秒前
15秒前
aa发布了新的文献求助10
16秒前
会飞的烧鹅完成签到,获得积分10
16秒前
勤劳的可乐完成签到,获得积分10
17秒前
18秒前
为SCI奋斗发布了新的文献求助10
19秒前
王延森发布了新的文献求助10
19秒前
bkagyin应助诚心冥王星采纳,获得10
20秒前
21秒前
cookies完成签到,获得积分10
21秒前
21秒前
21秒前
Orange应助cloud采纳,获得10
22秒前
桐桐应助cloud采纳,获得10
22秒前
大个应助cloud采纳,获得10
22秒前
赘婿应助cloud采纳,获得10
22秒前
浮游应助cloud采纳,获得10
22秒前
lxcy0612完成签到,获得积分10
23秒前
Jannatul完成签到,获得积分10
23秒前
23秒前
edtaa发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908298
求助须知:如何正确求助?哪些是违规求助? 4184940
关于积分的说明 12996288
捐赠科研通 3951683
什么是DOI,文献DOI怎么找? 2167128
邀请新用户注册赠送积分活动 1185582
关于科研通互助平台的介绍 1092175