Machine Learning Approaches in Traditional Chinese Medicine: A Systematic Review

人工智能 线性判别分析 支持向量机 机器学习 偏最小二乘回归 计算机科学 聚类分析 人工神经网络 主成分分析 降维 领域(数学) 决策树 层次聚类 随机森林 判别函数分析 数据挖掘 模式识别(心理学) 数学 纯数学
作者
Haiyang Chen,He Yu
出处
期刊:The American Journal of Chinese Medicine [World Scientific]
卷期号:50 (01): 91-131 被引量:27
标识
DOI:10.1142/s0192415x22500045
摘要

Machine learning (ML), as a branch of artificial intelligence, acquires the potential and meaningful rules from the mass of data via diverse algorithms. Owing to all research of traditional Chinese medicine (TCM) belonging to the digitalization of clinical records or experimental works, a massive and complex amount of data has become an inextricable part of the related studies. It is thus not surprising that ML approaches, as novel and efficient tools to mine the useful knowledge from data, have created inroads in a diversity of scopes of TCM over the past decade of years. However, by browsing lots of literature, we find that not all of the ML approaches perform well in the same field. Upon further consideration, we infer that the specificity may inhere between the ML approaches and their applied fields. This systematic review focuses its attention on the four categories of ML approaches and their eight application scopes in TCM. According to the function, ML approaches are classified into four categories, including classification, regression, clustering, and dimensionality reduction, and into 14 models as follows in more detail: support vector machine, least square-support vector machine, logistic regression, partial least squares regression, k-means clustering, hierarchical cluster analysis, artificial neural network, back propagation neural network, convolutional neural network, decision tree, random forest, principal component analysis, partial least squares-discriminant analysis, and orthogonal partial least squares-discriminant analysis. The eight common applied fields are divided into two parts: one for TCM, such as the diagnosis of diseases, the determination of syndromes, and the analysis of prescription, and the other for the related researches of Chinese herbal medicine, such as the quality control, the identification of geographic origins, the pharmacodynamic material basis, the medicinal properties, and the pharmacokinetics and pharmacodynamics. Additionally, this paper discusses the function and feature difference among ML approaches when they are applied to the corresponding fields via comparing their principles. The specificity of each approach to its applied fields has also been affirmed, whereby laying a foundation for subsequent studies applying ML approaches to TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jason完成签到,获得积分10
刚刚
刚刚
刚刚
糖糖完成签到,获得积分10
1秒前
小二郎应助幸福胡萝卜采纳,获得10
1秒前
1秒前
亵渎完成签到,获得积分10
1秒前
mc1220完成签到,获得积分10
2秒前
2秒前
冰刀完成签到,获得积分10
3秒前
kid1412完成签到 ,获得积分10
4秒前
LU完成签到,获得积分10
4秒前
小蘑菇应助R先生采纳,获得50
4秒前
4秒前
小嘎完成签到 ,获得积分10
5秒前
5秒前
5秒前
小虎发布了新的文献求助30
5秒前
6秒前
superworm1完成签到,获得积分10
6秒前
不懂事的小孩完成签到,获得积分10
6秒前
张瑶完成签到,获得积分10
6秒前
chloe完成签到 ,获得积分10
6秒前
桐桐应助申小萌采纳,获得10
7秒前
星星泡饭完成签到,获得积分10
7秒前
健忘曼云完成签到,获得积分10
7秒前
晶晶妹妹发布了新的文献求助10
7秒前
7秒前
通~发布了新的文献求助10
8秒前
8秒前
xiaohongmao完成签到,获得积分10
8秒前
科研通AI5应助6680668采纳,获得10
9秒前
9秒前
卡卡发布了新的文献求助10
10秒前
11秒前
欢呼鼠标发布了新的文献求助10
11秒前
appearance发布了新的文献求助10
11秒前
奋斗的凡完成签到 ,获得积分10
11秒前
ice完成签到 ,获得积分10
12秒前
junc完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762