A dual-branch balance saliency model based on discriminative feature for fabric defect detection

判别式 特征(语言学) 计算机科学 对偶(语法数字) 人工智能 背景(考古学) 模式识别(心理学) 特征提取 光学(聚焦) 比例(比率) 数据挖掘 哲学 古生物学 艺术 文学类 物理 光学 生物 量子力学 语言学
作者
Zhoufeng Liu,Menghan Wang,Chunlei Li,Shuai Ding,Bicao Li
出处
期刊:International Journal of Clothing Science and Technology [Emerald (MCB UP)]
卷期号:34 (3): 451-466 被引量:1
标识
DOI:10.1108/ijcst-02-2021-0017
摘要

Purpose The purpose of this paper is to focus on the design of a dual-branch balance saliency model based on fully convolutional network (FCN) for automatic fabric defect detection, and improve quality control in textile manufacturing. Design/methodology/approach This paper proposed a dual-branch balance saliency model based on discriminative feature for fabric defect detection. A saliency branch is firstly designed to address the problems of scale variation and contextual information integration, which is realized through the cooperation of a multi-scale discriminative feature extraction module (MDFEM) and a bidirectional stage-wise integration module (BSIM). These modules are respectively adopted to extract multi-scale discriminative context information and enrich the contextual information of features at each stage. In addition, another branch is proposed to balance the network, in which a bootstrap refinement module (BRM) is trained to guide the restoration of feature details. Findings To evaluate the performance of the proposed network, we conduct extensive experiments, and the experimental results demonstrate that the proposed method outperforms state-of-the-art (SOTA) approaches on seven evaluation metrics. We also conduct adequate ablation analyses that provide a full understanding of the design principles of the proposed method. Originality/value The dual-branch balance saliency model was proposed and applied into the fabric defect detection. The qualitative and quantitative experimental results show the effectiveness of the detection method. Therefore, the proposed method can be used for accurate fabric defect detection and even surface defect detection of other industrial products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xue关注了科研通微信公众号
刚刚
刚刚
mayimo完成签到,获得积分10
刚刚
刚刚
水濑心源完成签到,获得积分10
1秒前
1秒前
WNL发布了新的文献求助10
1秒前
Orange应助哈哈采纳,获得10
2秒前
2秒前
领导范儿应助LUOLUO采纳,获得10
2秒前
沉默的西牛完成签到,获得积分10
2秒前
丸子鱼完成签到 ,获得积分10
3秒前
jj完成签到,获得积分10
3秒前
温柔梦曼发布了新的文献求助10
4秒前
沉静黎云发布了新的文献求助10
4秒前
4秒前
合适夏天发布了新的文献求助10
4秒前
sdq完成签到,获得积分10
4秒前
4秒前
希望天下0贩的0应助waoller1采纳,获得10
4秒前
niuwenyu发布了新的文献求助10
5秒前
nini完成签到,获得积分10
5秒前
Hong发布了新的文献求助30
5秒前
东风完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
豆沙包大王完成签到,获得积分10
7秒前
7秒前
carpediem发布了新的文献求助10
7秒前
7秒前
所所应助Jupiter采纳,获得10
7秒前
8秒前
WZQ完成签到,获得积分10
8秒前
Tu发布了新的文献求助10
8秒前
8秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3485695
求助须知:如何正确求助?哪些是违规求助? 3074409
关于积分的说明 9135952
捐赠科研通 2766240
什么是DOI,文献DOI怎么找? 1518055
邀请新用户注册赠送积分活动 702709
科研通“疑难数据库(出版商)”最低求助积分说明 701392