单变量
计算机科学
聚类分析
多元统计
系列(地层学)
自回归模型
时间序列
数据挖掘
人工智能
人工神经网络
自回归积分移动平均
机器学习
模式识别(心理学)
统计
数学
古生物学
生物
作者
Miguel Ángel Castán-Lascorz,P. Jiménez-Herrera,Alicia Troncoso,Gualberto Asencio-Cortés
标识
DOI:10.1016/j.ins.2021.12.001
摘要
Time series forecasting has become indispensable for multiple applications and industrial processes. Currently, a large number of algorithms have been developed to forecast time series, all of which are suitable depending on the characteristics and patterns to be inferred in each case. In this work, a new algorithm is proposed to predict both univariate and multivariate time series based on a combination of clustering, classification and forecasting techniques. The main goal of the proposed algorithm is first to group windows of time series values with similar patterns by applying a clustering process. Then, a specific forecasting model for each pattern is built and training is only conducted with the time windows corresponding to that pattern. The new algorithm has been designed using a flexible framework that allows the model to be generated using any combination of approaches within multiple machine learning techniques. To evaluate the model, several experiments are carried out using different configurations of the clustering, classification and forecasting methods that the model consists of. The results are analyzed and compared to classical prediction models, such as autoregressive, integrated, moving average and Holt-Winters models, to very recent forecasting methods, including deep, long short-term memory neural networks, and to well-known methods in the literature, such as k nearest neighbors, classification and regression trees, as well as random forest.
科研通智能强力驱动
Strongly Powered by AbleSci AI