A new hybrid method for predicting univariate and multivariate time series based on pattern forecasting

单变量 计算机科学 聚类分析 多元统计 系列(地层学) 自回归模型 时间序列 数据挖掘 人工智能 人工神经网络 自回归积分移动平均 机器学习 模式识别(心理学) 统计 数学 古生物学 生物
作者
Miguel Ángel Castán-Lascorz,P. Jiménez-Herrera,Alicia Troncoso,Gualberto Asencio-Cortés
出处
期刊:Information Sciences [Elsevier]
卷期号:586: 611-627 被引量:41
标识
DOI:10.1016/j.ins.2021.12.001
摘要

Time series forecasting has become indispensable for multiple applications and industrial processes. Currently, a large number of algorithms have been developed to forecast time series, all of which are suitable depending on the characteristics and patterns to be inferred in each case. In this work, a new algorithm is proposed to predict both univariate and multivariate time series based on a combination of clustering, classification and forecasting techniques. The main goal of the proposed algorithm is first to group windows of time series values with similar patterns by applying a clustering process. Then, a specific forecasting model for each pattern is built and training is only conducted with the time windows corresponding to that pattern. The new algorithm has been designed using a flexible framework that allows the model to be generated using any combination of approaches within multiple machine learning techniques. To evaluate the model, several experiments are carried out using different configurations of the clustering, classification and forecasting methods that the model consists of. The results are analyzed and compared to classical prediction models, such as autoregressive, integrated, moving average and Holt-Winters models, to very recent forecasting methods, including deep, long short-term memory neural networks, and to well-known methods in the literature, such as k nearest neighbors, classification and regression trees, as well as random forest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小红完成签到,获得积分10
刚刚
YuLu完成签到 ,获得积分10
刚刚
gk完成签到,获得积分0
2秒前
3秒前
lwl完成签到,获得积分10
4秒前
4秒前
4秒前
木木完成签到,获得积分10
4秒前
张一完成签到,获得积分10
5秒前
naplzp完成签到,获得积分10
7秒前
XNM关闭了XNM文献求助
8秒前
蜀山刀客完成签到,获得积分10
8秒前
9秒前
前途向阳完成签到 ,获得积分10
9秒前
hdhuang完成签到,获得积分10
9秒前
9秒前
lvsehx完成签到,获得积分20
11秒前
KJ完成签到,获得积分10
12秒前
LSS完成签到,获得积分10
13秒前
sheep完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
雷小牛完成签到 ,获得积分10
15秒前
慕青应助我是笨蛋采纳,获得10
16秒前
等待晓筠完成签到,获得积分10
17秒前
attention完成签到,获得积分10
18秒前
尹冰露完成签到,获得积分10
18秒前
CDI和LIB完成签到,获得积分10
19秒前
19秒前
四斤瓜完成签到 ,获得积分10
19秒前
认真丹亦完成签到 ,获得积分10
19秒前
孙刚完成签到 ,获得积分10
19秒前
养乐多完成签到,获得积分10
20秒前
热心市民完成签到 ,获得积分10
24秒前
24秒前
ttc完成签到,获得积分10
24秒前
石墨粉完成签到,获得积分10
24秒前
Zo完成签到,获得积分10
24秒前
筑梦之鱼完成签到,获得积分10
25秒前
五本笔记完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131