亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new hybrid method for predicting univariate and multivariate time series based on pattern forecasting

单变量 计算机科学 聚类分析 多元统计 系列(地层学) 自回归模型 时间序列 数据挖掘 人工智能 人工神经网络 自回归积分移动平均 机器学习 模式识别(心理学) 统计 数学 古生物学 生物
作者
Miguel Ángel Castán-Lascorz,P. Jiménez-Herrera,Alicia Troncoso,Gualberto Asencio-Cortés
出处
期刊:Information Sciences [Elsevier]
卷期号:586: 611-627 被引量:41
标识
DOI:10.1016/j.ins.2021.12.001
摘要

Time series forecasting has become indispensable for multiple applications and industrial processes. Currently, a large number of algorithms have been developed to forecast time series, all of which are suitable depending on the characteristics and patterns to be inferred in each case. In this work, a new algorithm is proposed to predict both univariate and multivariate time series based on a combination of clustering, classification and forecasting techniques. The main goal of the proposed algorithm is first to group windows of time series values with similar patterns by applying a clustering process. Then, a specific forecasting model for each pattern is built and training is only conducted with the time windows corresponding to that pattern. The new algorithm has been designed using a flexible framework that allows the model to be generated using any combination of approaches within multiple machine learning techniques. To evaluate the model, several experiments are carried out using different configurations of the clustering, classification and forecasting methods that the model consists of. The results are analyzed and compared to classical prediction models, such as autoregressive, integrated, moving average and Holt-Winters models, to very recent forecasting methods, including deep, long short-term memory neural networks, and to well-known methods in the literature, such as k nearest neighbors, classification and regression trees, as well as random forest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ss发布了新的文献求助10
1秒前
英姑应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
7秒前
zsmj23完成签到 ,获得积分0
15秒前
16秒前
风华正茂发布了新的文献求助10
19秒前
30秒前
47秒前
48秒前
1分钟前
1分钟前
NexusExplorer应助chxericdong采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
chxericdong完成签到,获得积分10
2分钟前
2分钟前
2分钟前
chxericdong发布了新的文献求助10
2分钟前
LL完成签到 ,获得积分10
3分钟前
3分钟前
小麦发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
daihq3发布了新的文献求助10
3分钟前
utopia完成签到,获得积分20
4分钟前
文章多多发布了新的文献求助10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
小蘑菇应助daihq3采纳,获得10
4分钟前
kukudou2发布了新的文献求助10
4分钟前
kuoping完成签到,获得积分0
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639664
求助须知:如何正确求助?哪些是违规求助? 4749580
关于积分的说明 15007025
捐赠科研通 4797830
什么是DOI,文献DOI怎么找? 2563907
邀请新用户注册赠送积分活动 1522813
关于科研通互助平台的介绍 1482510