已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new hybrid method for predicting univariate and multivariate time series based on pattern forecasting

单变量 计算机科学 聚类分析 多元统计 系列(地层学) 自回归模型 时间序列 数据挖掘 人工智能 人工神经网络 自回归积分移动平均 机器学习 模式识别(心理学) 统计 数学 古生物学 生物
作者
Miguel Ángel Castán-Lascorz,P. Jiménez-Herrera,Alicia Troncoso,Gualberto Asencio-Cortés
出处
期刊:Information Sciences [Elsevier BV]
卷期号:586: 611-627 被引量:41
标识
DOI:10.1016/j.ins.2021.12.001
摘要

Time series forecasting has become indispensable for multiple applications and industrial processes. Currently, a large number of algorithms have been developed to forecast time series, all of which are suitable depending on the characteristics and patterns to be inferred in each case. In this work, a new algorithm is proposed to predict both univariate and multivariate time series based on a combination of clustering, classification and forecasting techniques. The main goal of the proposed algorithm is first to group windows of time series values with similar patterns by applying a clustering process. Then, a specific forecasting model for each pattern is built and training is only conducted with the time windows corresponding to that pattern. The new algorithm has been designed using a flexible framework that allows the model to be generated using any combination of approaches within multiple machine learning techniques. To evaluate the model, several experiments are carried out using different configurations of the clustering, classification and forecasting methods that the model consists of. The results are analyzed and compared to classical prediction models, such as autoregressive, integrated, moving average and Holt-Winters models, to very recent forecasting methods, including deep, long short-term memory neural networks, and to well-known methods in the literature, such as k nearest neighbors, classification and regression trees, as well as random forest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白玫瑰发布了新的文献求助10
5秒前
Hello应助LJQ采纳,获得10
5秒前
NexusExplorer应助max采纳,获得10
7秒前
9秒前
Margaret完成签到 ,获得积分10
10秒前
舒萼完成签到,获得积分10
10秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
吾月发布了新的文献求助10
14秒前
FashionBoy应助白玫瑰采纳,获得10
16秒前
myheng完成签到 ,获得积分10
17秒前
lanxinyue完成签到,获得积分0
18秒前
搜集达人应助轻舟采纳,获得10
19秒前
19秒前
max发布了新的文献求助10
20秒前
郭娅楠发布了新的文献求助10
24秒前
七熵完成签到 ,获得积分0
27秒前
邵邵关注了科研通微信公众号
30秒前
小二郎应助leolee采纳,获得10
37秒前
李健的小迷弟应助vv采纳,获得10
43秒前
43秒前
leolee完成签到,获得积分10
44秒前
47秒前
科研通AI2S应助Amy采纳,获得10
49秒前
汉堡包应助科研通管家采纳,获得10
49秒前
柯一一应助科研通管家采纳,获得10
49秒前
49秒前
邵邵发布了新的文献求助10
50秒前
ww完成签到 ,获得积分10
51秒前
ekko发布了新的文献求助10
52秒前
哈哈完成签到,获得积分10
53秒前
leolee发布了新的文献求助10
54秒前
LJQ发布了新的文献求助10
56秒前
1分钟前
秋刀鱼不过期完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
轻舟发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024