A new hybrid method for predicting univariate and multivariate time series based on pattern forecasting

单变量 计算机科学 聚类分析 多元统计 系列(地层学) 自回归模型 时间序列 数据挖掘 人工智能 人工神经网络 自回归积分移动平均 机器学习 模式识别(心理学) 统计 数学 古生物学 生物
作者
Miguel Ángel Castán-Lascorz,P. Jiménez-Herrera,Alicia Troncoso,Gualberto Asencio-Cortés
出处
期刊:Information Sciences [Elsevier]
卷期号:586: 611-627 被引量:41
标识
DOI:10.1016/j.ins.2021.12.001
摘要

Time series forecasting has become indispensable for multiple applications and industrial processes. Currently, a large number of algorithms have been developed to forecast time series, all of which are suitable depending on the characteristics and patterns to be inferred in each case. In this work, a new algorithm is proposed to predict both univariate and multivariate time series based on a combination of clustering, classification and forecasting techniques. The main goal of the proposed algorithm is first to group windows of time series values with similar patterns by applying a clustering process. Then, a specific forecasting model for each pattern is built and training is only conducted with the time windows corresponding to that pattern. The new algorithm has been designed using a flexible framework that allows the model to be generated using any combination of approaches within multiple machine learning techniques. To evaluate the model, several experiments are carried out using different configurations of the clustering, classification and forecasting methods that the model consists of. The results are analyzed and compared to classical prediction models, such as autoregressive, integrated, moving average and Holt-Winters models, to very recent forecasting methods, including deep, long short-term memory neural networks, and to well-known methods in the literature, such as k nearest neighbors, classification and regression trees, as well as random forest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝羽发布了新的文献求助10
刚刚
赘婿应助印第安老斑鸠采纳,获得10
刚刚
koicy发布了新的文献求助10
1秒前
棒棒堂完成签到,获得积分10
1秒前
YFTang完成签到,获得积分10
1秒前
饱满秋完成签到,获得积分10
1秒前
要毕业的小刘完成签到,获得积分10
2秒前
开心水风完成签到,获得积分20
2秒前
2秒前
cyainde发布了新的文献求助10
2秒前
tiamr完成签到,获得积分10
3秒前
成就的曼凡完成签到,获得积分10
3秒前
Hertz发布了新的文献求助10
3秒前
LYY完成签到,获得积分10
4秒前
乐乐应助HXuer采纳,获得10
4秒前
思源应助欣慰若枫采纳,获得10
5秒前
上官若男应助林林林采纳,获得10
5秒前
李志豪完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
林霖完成签到,获得积分10
7秒前
Helic完成签到,获得积分10
8秒前
8秒前
8秒前
林结衣完成签到,获得积分10
8秒前
丘比特应助开心水风采纳,获得10
9秒前
Jiang_sir完成签到,获得积分10
9秒前
小李爱查文献完成签到,获得积分10
9秒前
风雅完成签到,获得积分10
9秒前
10秒前
卡拉肖客发布了新的文献求助10
10秒前
NexusExplorer应助lixiaofan采纳,获得10
10秒前
10秒前
teng完成签到,获得积分10
11秒前
summer应助滴答滴采纳,获得10
12秒前
12秒前
22完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477701
求助须知:如何正确求助?哪些是违规求助? 4579485
关于积分的说明 14369133
捐赠科研通 4507697
什么是DOI,文献DOI怎么找? 2470120
邀请新用户注册赠送积分活动 1457068
关于科研通互助平台的介绍 1431055