Combining MALDI-MS with machine learning for metabolomic characterization of lung cancer patient sera

代谢组学 代谢物 肺癌 生物标志物发现 生物标志物 质谱法 癌症 基质辅助激光解吸/电离 诊断生物标志物 色谱法 化学 医学 内科学 蛋白质组学 解吸 生物化学 吸附 有机化学 基因
作者
Xiaopin Lai,Kunbin Guo,Wei Huang,Yang Su,Siyu Chen,Qiongdan Li,Kaiqing Liang,Wenhua Gao,Xin Wang,Yuping Chen,Hongbiao Wang,Wen Lin,Xiaolong Wei,Wen‐Xiu Ni,Yan Lin,Dazhi Jiang,Yu-Hong Cheng,Chi‐Ming Che,Kwan‐Ming Ng
出处
期刊:Analytical Methods [Royal Society of Chemistry]
卷期号:14 (5): 499-507 被引量:4
标识
DOI:10.1039/d1ay01940f
摘要

An increasing amount of evidence has proven that serum metabolites can instantly reflect disease states. Therefore, sensitive and reproducible detection of serum metabolites in a high-throughput manner is urgently needed for clinical diagnosis. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a high-throughput platform for metabolite detection, but it is hindered by significant signal fluctuations because of the "sweet spot" effect of organic matrices. Here, by screening two transformation methods and four normalization techniques to reduce the significant signal fluctuations of the DHB matrix, an integrated MALDI-MS data processing approach combined with machine learning methods was established to reveal metabolic biomarkers of lung cancer. In our study, 13 distinctive features with statistically significant differences (p < 0.001) between 34 lung cancer patients and 26 healthy controls were selected as significant potential biomarkers of lung cancer. 6 out of the 13 distinctive features were identified as intact metabolites. Our results demonstrate the potential for clinical application of MALDI-MS in serum metabolomics for biomarker screening in lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
君莫笑完成签到,获得积分10
2秒前
李九月发布了新的文献求助10
3秒前
十八完成签到 ,获得积分10
3秒前
小董不懂发布了新的文献求助10
3秒前
超帅的访云完成签到,获得积分10
4秒前
超人也读博完成签到,获得积分20
5秒前
小肆完成签到 ,获得积分10
5秒前
7秒前
Beth完成签到,获得积分10
8秒前
9秒前
bkagyin应助fengdengjin采纳,获得10
9秒前
安AN完成签到,获得积分10
9秒前
10秒前
17381362015完成签到,获得积分10
11秒前
Xu完成签到,获得积分10
12秒前
12秒前
傅全有完成签到,获得积分10
13秒前
bkagyin应助liwanhong采纳,获得10
13秒前
RussellZ发布了新的文献求助10
13秒前
可期发布了新的文献求助10
14秒前
15秒前
yuan完成签到,获得积分10
15秒前
cureall应助yihuifa采纳,获得10
15秒前
16秒前
阔达翠彤完成签到,获得积分10
16秒前
16秒前
爱喝酒的酒葫芦完成签到,获得积分10
16秒前
shmily完成签到,获得积分10
18秒前
18秒前
重要的奇异果完成签到,获得积分10
19秒前
20秒前
酷波er应助Echo采纳,获得10
20秒前
兜大王发布了新的文献求助10
21秒前
adi完成签到,获得积分10
21秒前
大厨懒洋洋完成签到,获得积分10
21秒前
22秒前
青天白日发布了新的文献求助20
23秒前
24秒前
聆琳完成签到 ,获得积分10
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150