High‐Throughput Method–Accelerated Design of Ni‐Based Superalloys

高温合金 材料科学 吞吐量 理论(学习稳定性) 蠕动 计算机科学 反向 合金 机器学习 冶金 电信 无线 几何学 数学
作者
Feng Liu,Zexin Wang,Zi Wang,Jing Zhong,Lei Zhao,Liang Jiang,Runhua Zhou,Yong Liu,Lan Huang,Liming Tan,Yujia Tian,Han Zheng,Qihong Fang,Lijun Zhang,Lina Zhang,Hong Wu,Lichun Bai,Kun Zhou
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (28) 被引量:33
标识
DOI:10.1002/adfm.202109367
摘要

Abstract Ever‐increasing demands for superior alloys with improved high‐temperature service properties require accurate design of their composition. However, conventional approaches to screen the properties of alloys such as creep resistance and microstructural stability cost a lot of time and resources. This work therefore proposes a novel high throughput–based design strategy for high‐temperature alloys to accelerate their composition selections, by taking Ni‐based superalloys as an example. A numerical inverse method is used to massively calculate the multielement diffusion coefficients based on an accurate atomic mobility database. These coefficients are subsequently employed to refine the physical models for tuning the creep rates and structural stability of alloys, followed by unsupervised machine learning to categorize their composition and determine the range of the composition with optimal performance. By using a strict screening criterion, two sets of composition with comprehensively optimal properties are selected, which is then validated by experiments. Compared with recent data‐driven methods for materials design, this strategy exhibits high accuracy and efficiency attributed to the high‐throughput multicomponent diffusion couples, self‐developed atomic mobility database, and refined physical models. Since this strategy is independent of the alloy composition, it can efficiently accelerate the development of multicomponent high‐performance alloys and tackle challenges in discovering novel materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WXY发布了新的文献求助10
1秒前
希望天下0贩的0应助mvpzxx采纳,获得30
1秒前
露桥闻笛发布了新的文献求助10
3秒前
4秒前
科研通AI6应助柚子采纳,获得10
4秒前
hhh123发布了新的文献求助10
4秒前
周杰伦完成签到,获得积分10
4秒前
说不得大师完成签到,获得积分10
6秒前
6秒前
夏秀鑫关注了科研通微信公众号
6秒前
SciGPT应助ajjdnd采纳,获得10
6秒前
7秒前
夏硕士发布了新的文献求助10
8秒前
威武的雁易完成签到,获得积分10
8秒前
Eric发布了新的文献求助10
8秒前
CCC完成签到 ,获得积分10
8秒前
CodeCraft应助悦欣月采纳,获得10
11秒前
科研小白发布了新的文献求助10
12秒前
12秒前
高兴摇伽发布了新的文献求助10
13秒前
hyl-tcm完成签到 ,获得积分10
14秒前
15秒前
15秒前
搜集达人应助露桥闻笛采纳,获得30
16秒前
完美世界应助何必在乎采纳,获得10
16秒前
16秒前
科研通AI6应助SilverPlane采纳,获得10
17秒前
17秒前
Eric完成签到,获得积分10
20秒前
威武从霜发布了新的文献求助10
20秒前
mvpzxx发布了新的文献求助30
21秒前
知了完成签到 ,获得积分10
21秒前
77发布了新的文献求助10
22秒前
冯藏花完成签到,获得积分10
22秒前
小白完成签到 ,获得积分10
23秒前
陈曦读研版完成签到 ,获得积分10
23秒前
24秒前
paws发布了新的文献求助10
24秒前
Akim应助无限绮南采纳,获得10
27秒前
红毛兔完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995