High‐Throughput Method–Accelerated Design of Ni‐Based Superalloys

高温合金 材料科学 吞吐量 理论(学习稳定性) 蠕动 计算机科学 反向 合金 机器学习 冶金 电信 无线 几何学 数学
作者
Feng Liu,Zexin Wang,Zi Wang,Jing Zhong,Lei Zhao,Liang Jiang,Runhua Zhou,Yong Liu,Lan Huang,Liming Tan,Yujia Tian,Han Zheng,Qihong Fang,Lijun Zhang,Lina Zhang,Hong Wu,Lichun Bai,Kun Zhou
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (28) 被引量:33
标识
DOI:10.1002/adfm.202109367
摘要

Abstract Ever‐increasing demands for superior alloys with improved high‐temperature service properties require accurate design of their composition. However, conventional approaches to screen the properties of alloys such as creep resistance and microstructural stability cost a lot of time and resources. This work therefore proposes a novel high throughput–based design strategy for high‐temperature alloys to accelerate their composition selections, by taking Ni‐based superalloys as an example. A numerical inverse method is used to massively calculate the multielement diffusion coefficients based on an accurate atomic mobility database. These coefficients are subsequently employed to refine the physical models for tuning the creep rates and structural stability of alloys, followed by unsupervised machine learning to categorize their composition and determine the range of the composition with optimal performance. By using a strict screening criterion, two sets of composition with comprehensively optimal properties are selected, which is then validated by experiments. Compared with recent data‐driven methods for materials design, this strategy exhibits high accuracy and efficiency attributed to the high‐throughput multicomponent diffusion couples, self‐developed atomic mobility database, and refined physical models. Since this strategy is independent of the alloy composition, it can efficiently accelerate the development of multicomponent high‐performance alloys and tackle challenges in discovering novel materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LYSM应助Ahan采纳,获得20
1秒前
1秒前
GG发布了新的文献求助10
1秒前
2秒前
2秒前
22关闭了22文献求助
2秒前
tyj发布了新的文献求助10
3秒前
tecumseh发布了新的文献求助10
3秒前
beta完成签到,获得积分10
4秒前
ED应助一米阳光采纳,获得10
4秒前
225455完成签到,获得积分20
5秒前
香蕉觅云应助金虎采纳,获得10
5秒前
5秒前
淳于寻冬发布了新的文献求助10
5秒前
6秒前
蜜呐完成签到,获得积分10
6秒前
7秒前
黑妹发布了新的文献求助10
7秒前
ym发布了新的文献求助10
7秒前
清脆碧空应助NoobMasterZYF采纳,获得10
8秒前
FashionBoy应助黎洛洛采纳,获得10
9秒前
9秒前
楚狂接舆完成签到,获得积分10
10秒前
咎穆发布了新的文献求助10
10秒前
小昵称完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
12秒前
称心不尤发布了新的文献求助10
12秒前
12秒前
12秒前
yznfly应助动听的晓啸采纳,获得20
13秒前
13秒前
叫我一只球应助DDDuan采纳,获得10
13秒前
认真的砖头完成签到 ,获得积分10
13秒前
典雅的静发布了新的文献求助10
14秒前
香蕉觅云应助cat采纳,获得10
14秒前
FashionBoy应助liuxuwei采纳,获得10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352